Find the value of $1-frac{1}{7}+frac{1}{9}-frac{1}{15}+frac{1}{17}-frac{1}{23}+frac{1}{25}…$
Multi tool use
$begingroup$
Find the value of this :$$1-frac{1}{7}+frac{1}{9}-frac{1}{15}+frac{1}{17}-frac{1}{23}+frac{1}{25}....$$
Try: We can write the above series as
$${S} = int^{1}_{0}bigg[1-x^6+x^8-x^{14}+x^{16}-x^{22}+cdotsbigg]dx$$
$$S = int^{1}_{0}(1-x^6)bigg[1+x^{8}+x^{16}+cdots cdots bigg]dx$$
So $$S = int^{1}_{0}frac{1-x^6}{1-x^{8}}dx = int^{1}_{0}frac{x^4+x^2+1}{(x^2+1)(x^4+1)}dx$$
Now i am struck in that integration.
Did not understand how to solve it
could some help me to solve it. Thanks in advance
integration sequences-and-series definite-integrals
$endgroup$
|
show 2 more comments
$begingroup$
Find the value of this :$$1-frac{1}{7}+frac{1}{9}-frac{1}{15}+frac{1}{17}-frac{1}{23}+frac{1}{25}....$$
Try: We can write the above series as
$${S} = int^{1}_{0}bigg[1-x^6+x^8-x^{14}+x^{16}-x^{22}+cdotsbigg]dx$$
$$S = int^{1}_{0}(1-x^6)bigg[1+x^{8}+x^{16}+cdots cdots bigg]dx$$
So $$S = int^{1}_{0}frac{1-x^6}{1-x^{8}}dx = int^{1}_{0}frac{x^4+x^2+1}{(x^2+1)(x^4+1)}dx$$
Now i am struck in that integration.
Did not understand how to solve it
could some help me to solve it. Thanks in advance
integration sequences-and-series definite-integrals
$endgroup$
$begingroup$
Hint: Partial fraction decomposition ($x^4+1$ can be factored over the reals).
$endgroup$
– Michael Burr
Dec 18 '18 at 15:24
2
$begingroup$
Replace $x^2=y$ and use mathworld.wolfram.com/PartialFractionDecomposition.html and replace back $x$
$endgroup$
– lab bhattacharjee
Dec 18 '18 at 15:25
1
$begingroup$
See also math.stackexchange.com/questions/2363639/int-fracx2x4x21-dx/…
$endgroup$
– lab bhattacharjee
Dec 18 '18 at 15:26
$begingroup$
Hey, is this a problem from Joseph edwards integral calculus for beginners? I remember solving this. The answer should equal something like $frac{pi}{8}(1+sqrt{2)}$ or something.
$endgroup$
– crskhr
Dec 18 '18 at 15:28
1
$begingroup$
@Stockfish: Absolutely convergent series.
$endgroup$
– Clayton
Dec 18 '18 at 15:32
|
show 2 more comments
$begingroup$
Find the value of this :$$1-frac{1}{7}+frac{1}{9}-frac{1}{15}+frac{1}{17}-frac{1}{23}+frac{1}{25}....$$
Try: We can write the above series as
$${S} = int^{1}_{0}bigg[1-x^6+x^8-x^{14}+x^{16}-x^{22}+cdotsbigg]dx$$
$$S = int^{1}_{0}(1-x^6)bigg[1+x^{8}+x^{16}+cdots cdots bigg]dx$$
So $$S = int^{1}_{0}frac{1-x^6}{1-x^{8}}dx = int^{1}_{0}frac{x^4+x^2+1}{(x^2+1)(x^4+1)}dx$$
Now i am struck in that integration.
Did not understand how to solve it
could some help me to solve it. Thanks in advance
integration sequences-and-series definite-integrals
$endgroup$
Find the value of this :$$1-frac{1}{7}+frac{1}{9}-frac{1}{15}+frac{1}{17}-frac{1}{23}+frac{1}{25}....$$
Try: We can write the above series as
$${S} = int^{1}_{0}bigg[1-x^6+x^8-x^{14}+x^{16}-x^{22}+cdotsbigg]dx$$
$$S = int^{1}_{0}(1-x^6)bigg[1+x^{8}+x^{16}+cdots cdots bigg]dx$$
So $$S = int^{1}_{0}frac{1-x^6}{1-x^{8}}dx = int^{1}_{0}frac{x^4+x^2+1}{(x^2+1)(x^4+1)}dx$$
Now i am struck in that integration.
Did not understand how to solve it
could some help me to solve it. Thanks in advance
integration sequences-and-series definite-integrals
integration sequences-and-series definite-integrals
edited Dec 19 '18 at 6:04
Asaf Karagila♦
307k33440773
307k33440773
asked Dec 18 '18 at 15:20
DXTDXT
6,0762732
6,0762732
$begingroup$
Hint: Partial fraction decomposition ($x^4+1$ can be factored over the reals).
$endgroup$
– Michael Burr
Dec 18 '18 at 15:24
2
$begingroup$
Replace $x^2=y$ and use mathworld.wolfram.com/PartialFractionDecomposition.html and replace back $x$
$endgroup$
– lab bhattacharjee
Dec 18 '18 at 15:25
1
$begingroup$
See also math.stackexchange.com/questions/2363639/int-fracx2x4x21-dx/…
$endgroup$
– lab bhattacharjee
Dec 18 '18 at 15:26
$begingroup$
Hey, is this a problem from Joseph edwards integral calculus for beginners? I remember solving this. The answer should equal something like $frac{pi}{8}(1+sqrt{2)}$ or something.
$endgroup$
– crskhr
Dec 18 '18 at 15:28
1
$begingroup$
@Stockfish: Absolutely convergent series.
$endgroup$
– Clayton
Dec 18 '18 at 15:32
|
show 2 more comments
$begingroup$
Hint: Partial fraction decomposition ($x^4+1$ can be factored over the reals).
$endgroup$
– Michael Burr
Dec 18 '18 at 15:24
2
$begingroup$
Replace $x^2=y$ and use mathworld.wolfram.com/PartialFractionDecomposition.html and replace back $x$
$endgroup$
– lab bhattacharjee
Dec 18 '18 at 15:25
1
$begingroup$
See also math.stackexchange.com/questions/2363639/int-fracx2x4x21-dx/…
$endgroup$
– lab bhattacharjee
Dec 18 '18 at 15:26
$begingroup$
Hey, is this a problem from Joseph edwards integral calculus for beginners? I remember solving this. The answer should equal something like $frac{pi}{8}(1+sqrt{2)}$ or something.
$endgroup$
– crskhr
Dec 18 '18 at 15:28
1
$begingroup$
@Stockfish: Absolutely convergent series.
$endgroup$
– Clayton
Dec 18 '18 at 15:32
$begingroup$
Hint: Partial fraction decomposition ($x^4+1$ can be factored over the reals).
$endgroup$
– Michael Burr
Dec 18 '18 at 15:24
$begingroup$
Hint: Partial fraction decomposition ($x^4+1$ can be factored over the reals).
$endgroup$
– Michael Burr
Dec 18 '18 at 15:24
2
2
$begingroup$
Replace $x^2=y$ and use mathworld.wolfram.com/PartialFractionDecomposition.html and replace back $x$
$endgroup$
– lab bhattacharjee
Dec 18 '18 at 15:25
$begingroup$
Replace $x^2=y$ and use mathworld.wolfram.com/PartialFractionDecomposition.html and replace back $x$
$endgroup$
– lab bhattacharjee
Dec 18 '18 at 15:25
1
1
$begingroup$
See also math.stackexchange.com/questions/2363639/int-fracx2x4x21-dx/…
$endgroup$
– lab bhattacharjee
Dec 18 '18 at 15:26
$begingroup$
See also math.stackexchange.com/questions/2363639/int-fracx2x4x21-dx/…
$endgroup$
– lab bhattacharjee
Dec 18 '18 at 15:26
$begingroup$
Hey, is this a problem from Joseph edwards integral calculus for beginners? I remember solving this. The answer should equal something like $frac{pi}{8}(1+sqrt{2)}$ or something.
$endgroup$
– crskhr
Dec 18 '18 at 15:28
$begingroup$
Hey, is this a problem from Joseph edwards integral calculus for beginners? I remember solving this. The answer should equal something like $frac{pi}{8}(1+sqrt{2)}$ or something.
$endgroup$
– crskhr
Dec 18 '18 at 15:28
1
1
$begingroup$
@Stockfish: Absolutely convergent series.
$endgroup$
– Clayton
Dec 18 '18 at 15:32
$begingroup$
@Stockfish: Absolutely convergent series.
$endgroup$
– Clayton
Dec 18 '18 at 15:32
|
show 2 more comments
4 Answers
4
active
oldest
votes
$begingroup$
Another approach, which could be useful to check yours through integrals,
is same as per the similar post, using the Digamma function $psi (z)$.
$$
eqalign{
& 1 - {1 over {8 - 1}} + {1 over {8 + 1}} - {1 over {2 cdot 8 - 1}} + {1 over {2 cdot 8 + 1}} + cdots = cr
& = 1 - sumlimits_{1, le ,n} {{1 over {8n - 1}}} + sumlimits_{1, le ,n} {{1 over {8n + 1}}} = cr
& = 1 - {1 over 8}left( {sumlimits_{1, le ,n} {{1 over {n - 1/8}}} - sumlimits_{1, le ,n} {{1 over {n + 1/8}}} } right) = cr
& = 1 - {1 over 8}left( {sumnolimits_{;n = 7/8}^{;infty } {{1 over n}} - sumnolimits_{;n = 9/8}^{;infty } {{1 over n}} } right) = cr
& = 1 - {1 over 8}left( {sumnolimits_{;n = 7/8}^{;9/8} {{1 over n}} } right) = cr
& = 1 - {1 over 8}left( {psi (9/8) - psi (7/8)} right) = cr
& = 1 - {1 over 8}left( {psi left( {1 + 1/8} right) - psi left( {1 - 1/8} right)} right) = cr
& = 1 - {1 over 8}left( {{1 over {1/8}} + psi left( {1/8} right) - psi left( {1 - 1/8} right)} right) = cr
& = {1 over 8}left( {psi left( {1 - 1/8} right) - psi left( {1/8} right)} right) = cr
& = {1 over 8}left( {pi cot left( {{pi over 8}} right)} right) = cr
& = {{pi left( {1 + sqrt 2 } right)} over 8} cr}
$$
where:
$$
Delta _{,z} psi left( z right) = psi left( {z + 1} right) - psi left( z right) = {1 over z}
$$
is the functional equation for the Digamma;
which implies that Digamma is the Antidelta of $1/z$
$$
eqalign{
& psi left( z right) = Delta _{,z} ^{ - 1} left( {{1 over z}} right) = sumnolimits_z {{1 over z}} quad Rightarrow cr
& Rightarrow quad sumnolimits_{;z = a}^{;b} {{1 over z}} = psi left( b right) - psi left( a right) cr}
$$
and we used the Reflection formula for Digamma
$$
psi left( {1 - z} right) = psi left( z right) + pi cot left( {pi z} right)
$$
Now, the above, suggests a way to solve the integral.
Let's replace $x^8$ with $y$
$$
int_{x = 0}^{,1} {{{1 - x^{,6} } over {1 - x^{,8} }}dx} quad mathop
= limits^{x^{,8} = y} quad {1 over 8}int_{y = 0}^{,1} {{{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }}dy}
$$
then consider that we have
$$
eqalign{
& {{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }} = cr
& = left( {left( {1 - y} right)^{ - 1} y^{, - 7/8} - left( {1 - y} right)^{ - 1} y^{, - 1/8} } right) cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {left( {1 - y} right)^{varepsilon - 1} y^{,1/8 - 1}
- left( {1 - y} right)^{varepsilon - 1} y^{,,7/8 - 1} } right) cr}
$$
so we are ready to use the integral and Gamma representation for the Beta function
$$
eqalign{
& 8 ;int_{x = 0}^{,1} {{{1 - x^{,6} } over {1 - x^{,8} }}dx} = int_{y = 0}^{,1} {{{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }}dy} = cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {int_{y = 0}^{,1} {left( {1 - y} right)^{varepsilon - 1} y^{,1/8 - 1} dy}
- int_{y = 0}^{,1} {left( {1 - y} right)^{varepsilon - 1} y^{,,7/8 - 1} dy} } right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {{rm B}left( {1/8,varepsilon } right) - {rm B}left( {7/8,varepsilon } right)} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {{{Gamma left( {1/8} right)Gamma left( varepsilon right)}
over {Gamma left( {1/8 + varepsilon } right)}}
- {{Gamma left( {7/8} right)Gamma left( varepsilon right)} over {Gamma left( {7/8 + varepsilon } right)}}} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {{{Gamma left( {1/8} right)Gamma left( varepsilon right)}
over {psi left( {1/8} right)varepsilon ;Gamma left( {1/8} right)
+ Gamma left( {1/8} right)}} - {{Gamma left( {7/8} right)Gamma left( varepsilon right)}
over {psi left( {7/8} right)varepsilon ;Gamma left( {7/8} right) + Gamma left( {7/8} right)}}} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {{{Gamma left( varepsilon right)} over {psi left( {1/8} right)varepsilon ; + 1}}
- {{Gamma left( varepsilon right)} over {psi left( {7/8} right)varepsilon ; + 1}}} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} Gamma left( varepsilon right)left( {left( {1 - psi left( {1/8} right)varepsilon ;} right)
- left( {1 - psi left( {7/8} right)varepsilon ;} right)} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} varepsilon ,Gamma left( varepsilon right)left( {psi left( {7/8} right) - psi left( {1/8} right)} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} ,Gamma left( {1 + varepsilon } right)left( {psi left( {7/8} right) - psi left( {1/8} right)} right) = cr
& = psi left( {7/8} right) - psi left( {1/8} right) cr}
$$
which is the same result as above.
Let me add a more straight derivation of the above.
We rewrite the integrand as
$$
eqalign{
& {{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }} = {{y^{, - 7/8} - y^{, - 1/8} } over {left( {1 - y} right)}} = cr
& = {{1 - y^{, - 1/8} - left( {1 - y^{, - 7/8} } right)} over {left( {1 - y} right)}} cr}
$$
and compare with the integral representation of Digamma
$$
psi (s + 1) = - gamma + int_0^1 {{{1 - x^{,s} } over {1 - x}}dx}
$$
$endgroup$
add a comment |
$begingroup$
HINT: Notice that
$$frac{x^4+x^2+1}{(x^2+1)(x^4+1)}=frac{1}{4}frac{1}{x^2+xsqrt{2}+1}+frac{1}{4}frac{1}{x^2-xsqrt{2}+1}+frac{1}{2}frac{1}{x^2+1}$$
Now we just have to evaluate the integrals
$$I_1=frac{1}{4}int_0^1 frac{dx}{x^2+xsqrt{2}+1}$$
$$I_2=frac{1}{4}int_0^1 frac{dx}{x^2-xsqrt{2}+1}$$
$$I_3=frac{1}{2}int_0^1 frac{dx}{x^2+1}$$
and your sum is given by $I_1+I_2+I_3$. Can you evaluate these?
$endgroup$
add a comment |
$begingroup$
The integral is tedious. We have, by Sophie Germain, that $x^4+1=(x^2+sqrt 2 x+1)(x^2-sqrt 2 x+1)$. Now, partial fraction and arctan gives the indefinite to be $frac{1}{4}left(2tan^{-1}x+sqrt{2}left(tan^{-1}left(sqrt{2}x+1right)-tan^{-1}left(1-sqrt{2}xright)right)right)$
$endgroup$
add a comment |
$begingroup$
Hint: your fraction is $(x^2+1)^{-1}+frac{x^2}{x^4+1}$, and $frac{x^2}{x^4+1}=frac{ax+b}{x^2-sqrt{2}x+1}+frac{-ax-b}{x^2+sqrt{2}x+1}$ for some real numbers $a,b$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3045282%2ffind-the-value-of-1-frac17-frac19-frac115-frac117-frac1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Another approach, which could be useful to check yours through integrals,
is same as per the similar post, using the Digamma function $psi (z)$.
$$
eqalign{
& 1 - {1 over {8 - 1}} + {1 over {8 + 1}} - {1 over {2 cdot 8 - 1}} + {1 over {2 cdot 8 + 1}} + cdots = cr
& = 1 - sumlimits_{1, le ,n} {{1 over {8n - 1}}} + sumlimits_{1, le ,n} {{1 over {8n + 1}}} = cr
& = 1 - {1 over 8}left( {sumlimits_{1, le ,n} {{1 over {n - 1/8}}} - sumlimits_{1, le ,n} {{1 over {n + 1/8}}} } right) = cr
& = 1 - {1 over 8}left( {sumnolimits_{;n = 7/8}^{;infty } {{1 over n}} - sumnolimits_{;n = 9/8}^{;infty } {{1 over n}} } right) = cr
& = 1 - {1 over 8}left( {sumnolimits_{;n = 7/8}^{;9/8} {{1 over n}} } right) = cr
& = 1 - {1 over 8}left( {psi (9/8) - psi (7/8)} right) = cr
& = 1 - {1 over 8}left( {psi left( {1 + 1/8} right) - psi left( {1 - 1/8} right)} right) = cr
& = 1 - {1 over 8}left( {{1 over {1/8}} + psi left( {1/8} right) - psi left( {1 - 1/8} right)} right) = cr
& = {1 over 8}left( {psi left( {1 - 1/8} right) - psi left( {1/8} right)} right) = cr
& = {1 over 8}left( {pi cot left( {{pi over 8}} right)} right) = cr
& = {{pi left( {1 + sqrt 2 } right)} over 8} cr}
$$
where:
$$
Delta _{,z} psi left( z right) = psi left( {z + 1} right) - psi left( z right) = {1 over z}
$$
is the functional equation for the Digamma;
which implies that Digamma is the Antidelta of $1/z$
$$
eqalign{
& psi left( z right) = Delta _{,z} ^{ - 1} left( {{1 over z}} right) = sumnolimits_z {{1 over z}} quad Rightarrow cr
& Rightarrow quad sumnolimits_{;z = a}^{;b} {{1 over z}} = psi left( b right) - psi left( a right) cr}
$$
and we used the Reflection formula for Digamma
$$
psi left( {1 - z} right) = psi left( z right) + pi cot left( {pi z} right)
$$
Now, the above, suggests a way to solve the integral.
Let's replace $x^8$ with $y$
$$
int_{x = 0}^{,1} {{{1 - x^{,6} } over {1 - x^{,8} }}dx} quad mathop
= limits^{x^{,8} = y} quad {1 over 8}int_{y = 0}^{,1} {{{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }}dy}
$$
then consider that we have
$$
eqalign{
& {{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }} = cr
& = left( {left( {1 - y} right)^{ - 1} y^{, - 7/8} - left( {1 - y} right)^{ - 1} y^{, - 1/8} } right) cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {left( {1 - y} right)^{varepsilon - 1} y^{,1/8 - 1}
- left( {1 - y} right)^{varepsilon - 1} y^{,,7/8 - 1} } right) cr}
$$
so we are ready to use the integral and Gamma representation for the Beta function
$$
eqalign{
& 8 ;int_{x = 0}^{,1} {{{1 - x^{,6} } over {1 - x^{,8} }}dx} = int_{y = 0}^{,1} {{{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }}dy} = cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {int_{y = 0}^{,1} {left( {1 - y} right)^{varepsilon - 1} y^{,1/8 - 1} dy}
- int_{y = 0}^{,1} {left( {1 - y} right)^{varepsilon - 1} y^{,,7/8 - 1} dy} } right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {{rm B}left( {1/8,varepsilon } right) - {rm B}left( {7/8,varepsilon } right)} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {{{Gamma left( {1/8} right)Gamma left( varepsilon right)}
over {Gamma left( {1/8 + varepsilon } right)}}
- {{Gamma left( {7/8} right)Gamma left( varepsilon right)} over {Gamma left( {7/8 + varepsilon } right)}}} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {{{Gamma left( {1/8} right)Gamma left( varepsilon right)}
over {psi left( {1/8} right)varepsilon ;Gamma left( {1/8} right)
+ Gamma left( {1/8} right)}} - {{Gamma left( {7/8} right)Gamma left( varepsilon right)}
over {psi left( {7/8} right)varepsilon ;Gamma left( {7/8} right) + Gamma left( {7/8} right)}}} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {{{Gamma left( varepsilon right)} over {psi left( {1/8} right)varepsilon ; + 1}}
- {{Gamma left( varepsilon right)} over {psi left( {7/8} right)varepsilon ; + 1}}} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} Gamma left( varepsilon right)left( {left( {1 - psi left( {1/8} right)varepsilon ;} right)
- left( {1 - psi left( {7/8} right)varepsilon ;} right)} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} varepsilon ,Gamma left( varepsilon right)left( {psi left( {7/8} right) - psi left( {1/8} right)} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} ,Gamma left( {1 + varepsilon } right)left( {psi left( {7/8} right) - psi left( {1/8} right)} right) = cr
& = psi left( {7/8} right) - psi left( {1/8} right) cr}
$$
which is the same result as above.
Let me add a more straight derivation of the above.
We rewrite the integrand as
$$
eqalign{
& {{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }} = {{y^{, - 7/8} - y^{, - 1/8} } over {left( {1 - y} right)}} = cr
& = {{1 - y^{, - 1/8} - left( {1 - y^{, - 7/8} } right)} over {left( {1 - y} right)}} cr}
$$
and compare with the integral representation of Digamma
$$
psi (s + 1) = - gamma + int_0^1 {{{1 - x^{,s} } over {1 - x}}dx}
$$
$endgroup$
add a comment |
$begingroup$
Another approach, which could be useful to check yours through integrals,
is same as per the similar post, using the Digamma function $psi (z)$.
$$
eqalign{
& 1 - {1 over {8 - 1}} + {1 over {8 + 1}} - {1 over {2 cdot 8 - 1}} + {1 over {2 cdot 8 + 1}} + cdots = cr
& = 1 - sumlimits_{1, le ,n} {{1 over {8n - 1}}} + sumlimits_{1, le ,n} {{1 over {8n + 1}}} = cr
& = 1 - {1 over 8}left( {sumlimits_{1, le ,n} {{1 over {n - 1/8}}} - sumlimits_{1, le ,n} {{1 over {n + 1/8}}} } right) = cr
& = 1 - {1 over 8}left( {sumnolimits_{;n = 7/8}^{;infty } {{1 over n}} - sumnolimits_{;n = 9/8}^{;infty } {{1 over n}} } right) = cr
& = 1 - {1 over 8}left( {sumnolimits_{;n = 7/8}^{;9/8} {{1 over n}} } right) = cr
& = 1 - {1 over 8}left( {psi (9/8) - psi (7/8)} right) = cr
& = 1 - {1 over 8}left( {psi left( {1 + 1/8} right) - psi left( {1 - 1/8} right)} right) = cr
& = 1 - {1 over 8}left( {{1 over {1/8}} + psi left( {1/8} right) - psi left( {1 - 1/8} right)} right) = cr
& = {1 over 8}left( {psi left( {1 - 1/8} right) - psi left( {1/8} right)} right) = cr
& = {1 over 8}left( {pi cot left( {{pi over 8}} right)} right) = cr
& = {{pi left( {1 + sqrt 2 } right)} over 8} cr}
$$
where:
$$
Delta _{,z} psi left( z right) = psi left( {z + 1} right) - psi left( z right) = {1 over z}
$$
is the functional equation for the Digamma;
which implies that Digamma is the Antidelta of $1/z$
$$
eqalign{
& psi left( z right) = Delta _{,z} ^{ - 1} left( {{1 over z}} right) = sumnolimits_z {{1 over z}} quad Rightarrow cr
& Rightarrow quad sumnolimits_{;z = a}^{;b} {{1 over z}} = psi left( b right) - psi left( a right) cr}
$$
and we used the Reflection formula for Digamma
$$
psi left( {1 - z} right) = psi left( z right) + pi cot left( {pi z} right)
$$
Now, the above, suggests a way to solve the integral.
Let's replace $x^8$ with $y$
$$
int_{x = 0}^{,1} {{{1 - x^{,6} } over {1 - x^{,8} }}dx} quad mathop
= limits^{x^{,8} = y} quad {1 over 8}int_{y = 0}^{,1} {{{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }}dy}
$$
then consider that we have
$$
eqalign{
& {{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }} = cr
& = left( {left( {1 - y} right)^{ - 1} y^{, - 7/8} - left( {1 - y} right)^{ - 1} y^{, - 1/8} } right) cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {left( {1 - y} right)^{varepsilon - 1} y^{,1/8 - 1}
- left( {1 - y} right)^{varepsilon - 1} y^{,,7/8 - 1} } right) cr}
$$
so we are ready to use the integral and Gamma representation for the Beta function
$$
eqalign{
& 8 ;int_{x = 0}^{,1} {{{1 - x^{,6} } over {1 - x^{,8} }}dx} = int_{y = 0}^{,1} {{{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }}dy} = cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {int_{y = 0}^{,1} {left( {1 - y} right)^{varepsilon - 1} y^{,1/8 - 1} dy}
- int_{y = 0}^{,1} {left( {1 - y} right)^{varepsilon - 1} y^{,,7/8 - 1} dy} } right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {{rm B}left( {1/8,varepsilon } right) - {rm B}left( {7/8,varepsilon } right)} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {{{Gamma left( {1/8} right)Gamma left( varepsilon right)}
over {Gamma left( {1/8 + varepsilon } right)}}
- {{Gamma left( {7/8} right)Gamma left( varepsilon right)} over {Gamma left( {7/8 + varepsilon } right)}}} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {{{Gamma left( {1/8} right)Gamma left( varepsilon right)}
over {psi left( {1/8} right)varepsilon ;Gamma left( {1/8} right)
+ Gamma left( {1/8} right)}} - {{Gamma left( {7/8} right)Gamma left( varepsilon right)}
over {psi left( {7/8} right)varepsilon ;Gamma left( {7/8} right) + Gamma left( {7/8} right)}}} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {{{Gamma left( varepsilon right)} over {psi left( {1/8} right)varepsilon ; + 1}}
- {{Gamma left( varepsilon right)} over {psi left( {7/8} right)varepsilon ; + 1}}} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} Gamma left( varepsilon right)left( {left( {1 - psi left( {1/8} right)varepsilon ;} right)
- left( {1 - psi left( {7/8} right)varepsilon ;} right)} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} varepsilon ,Gamma left( varepsilon right)left( {psi left( {7/8} right) - psi left( {1/8} right)} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} ,Gamma left( {1 + varepsilon } right)left( {psi left( {7/8} right) - psi left( {1/8} right)} right) = cr
& = psi left( {7/8} right) - psi left( {1/8} right) cr}
$$
which is the same result as above.
Let me add a more straight derivation of the above.
We rewrite the integrand as
$$
eqalign{
& {{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }} = {{y^{, - 7/8} - y^{, - 1/8} } over {left( {1 - y} right)}} = cr
& = {{1 - y^{, - 1/8} - left( {1 - y^{, - 7/8} } right)} over {left( {1 - y} right)}} cr}
$$
and compare with the integral representation of Digamma
$$
psi (s + 1) = - gamma + int_0^1 {{{1 - x^{,s} } over {1 - x}}dx}
$$
$endgroup$
add a comment |
$begingroup$
Another approach, which could be useful to check yours through integrals,
is same as per the similar post, using the Digamma function $psi (z)$.
$$
eqalign{
& 1 - {1 over {8 - 1}} + {1 over {8 + 1}} - {1 over {2 cdot 8 - 1}} + {1 over {2 cdot 8 + 1}} + cdots = cr
& = 1 - sumlimits_{1, le ,n} {{1 over {8n - 1}}} + sumlimits_{1, le ,n} {{1 over {8n + 1}}} = cr
& = 1 - {1 over 8}left( {sumlimits_{1, le ,n} {{1 over {n - 1/8}}} - sumlimits_{1, le ,n} {{1 over {n + 1/8}}} } right) = cr
& = 1 - {1 over 8}left( {sumnolimits_{;n = 7/8}^{;infty } {{1 over n}} - sumnolimits_{;n = 9/8}^{;infty } {{1 over n}} } right) = cr
& = 1 - {1 over 8}left( {sumnolimits_{;n = 7/8}^{;9/8} {{1 over n}} } right) = cr
& = 1 - {1 over 8}left( {psi (9/8) - psi (7/8)} right) = cr
& = 1 - {1 over 8}left( {psi left( {1 + 1/8} right) - psi left( {1 - 1/8} right)} right) = cr
& = 1 - {1 over 8}left( {{1 over {1/8}} + psi left( {1/8} right) - psi left( {1 - 1/8} right)} right) = cr
& = {1 over 8}left( {psi left( {1 - 1/8} right) - psi left( {1/8} right)} right) = cr
& = {1 over 8}left( {pi cot left( {{pi over 8}} right)} right) = cr
& = {{pi left( {1 + sqrt 2 } right)} over 8} cr}
$$
where:
$$
Delta _{,z} psi left( z right) = psi left( {z + 1} right) - psi left( z right) = {1 over z}
$$
is the functional equation for the Digamma;
which implies that Digamma is the Antidelta of $1/z$
$$
eqalign{
& psi left( z right) = Delta _{,z} ^{ - 1} left( {{1 over z}} right) = sumnolimits_z {{1 over z}} quad Rightarrow cr
& Rightarrow quad sumnolimits_{;z = a}^{;b} {{1 over z}} = psi left( b right) - psi left( a right) cr}
$$
and we used the Reflection formula for Digamma
$$
psi left( {1 - z} right) = psi left( z right) + pi cot left( {pi z} right)
$$
Now, the above, suggests a way to solve the integral.
Let's replace $x^8$ with $y$
$$
int_{x = 0}^{,1} {{{1 - x^{,6} } over {1 - x^{,8} }}dx} quad mathop
= limits^{x^{,8} = y} quad {1 over 8}int_{y = 0}^{,1} {{{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }}dy}
$$
then consider that we have
$$
eqalign{
& {{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }} = cr
& = left( {left( {1 - y} right)^{ - 1} y^{, - 7/8} - left( {1 - y} right)^{ - 1} y^{, - 1/8} } right) cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {left( {1 - y} right)^{varepsilon - 1} y^{,1/8 - 1}
- left( {1 - y} right)^{varepsilon - 1} y^{,,7/8 - 1} } right) cr}
$$
so we are ready to use the integral and Gamma representation for the Beta function
$$
eqalign{
& 8 ;int_{x = 0}^{,1} {{{1 - x^{,6} } over {1 - x^{,8} }}dx} = int_{y = 0}^{,1} {{{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }}dy} = cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {int_{y = 0}^{,1} {left( {1 - y} right)^{varepsilon - 1} y^{,1/8 - 1} dy}
- int_{y = 0}^{,1} {left( {1 - y} right)^{varepsilon - 1} y^{,,7/8 - 1} dy} } right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {{rm B}left( {1/8,varepsilon } right) - {rm B}left( {7/8,varepsilon } right)} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {{{Gamma left( {1/8} right)Gamma left( varepsilon right)}
over {Gamma left( {1/8 + varepsilon } right)}}
- {{Gamma left( {7/8} right)Gamma left( varepsilon right)} over {Gamma left( {7/8 + varepsilon } right)}}} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {{{Gamma left( {1/8} right)Gamma left( varepsilon right)}
over {psi left( {1/8} right)varepsilon ;Gamma left( {1/8} right)
+ Gamma left( {1/8} right)}} - {{Gamma left( {7/8} right)Gamma left( varepsilon right)}
over {psi left( {7/8} right)varepsilon ;Gamma left( {7/8} right) + Gamma left( {7/8} right)}}} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {{{Gamma left( varepsilon right)} over {psi left( {1/8} right)varepsilon ; + 1}}
- {{Gamma left( varepsilon right)} over {psi left( {7/8} right)varepsilon ; + 1}}} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} Gamma left( varepsilon right)left( {left( {1 - psi left( {1/8} right)varepsilon ;} right)
- left( {1 - psi left( {7/8} right)varepsilon ;} right)} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} varepsilon ,Gamma left( varepsilon right)left( {psi left( {7/8} right) - psi left( {1/8} right)} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} ,Gamma left( {1 + varepsilon } right)left( {psi left( {7/8} right) - psi left( {1/8} right)} right) = cr
& = psi left( {7/8} right) - psi left( {1/8} right) cr}
$$
which is the same result as above.
Let me add a more straight derivation of the above.
We rewrite the integrand as
$$
eqalign{
& {{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }} = {{y^{, - 7/8} - y^{, - 1/8} } over {left( {1 - y} right)}} = cr
& = {{1 - y^{, - 1/8} - left( {1 - y^{, - 7/8} } right)} over {left( {1 - y} right)}} cr}
$$
and compare with the integral representation of Digamma
$$
psi (s + 1) = - gamma + int_0^1 {{{1 - x^{,s} } over {1 - x}}dx}
$$
$endgroup$
Another approach, which could be useful to check yours through integrals,
is same as per the similar post, using the Digamma function $psi (z)$.
$$
eqalign{
& 1 - {1 over {8 - 1}} + {1 over {8 + 1}} - {1 over {2 cdot 8 - 1}} + {1 over {2 cdot 8 + 1}} + cdots = cr
& = 1 - sumlimits_{1, le ,n} {{1 over {8n - 1}}} + sumlimits_{1, le ,n} {{1 over {8n + 1}}} = cr
& = 1 - {1 over 8}left( {sumlimits_{1, le ,n} {{1 over {n - 1/8}}} - sumlimits_{1, le ,n} {{1 over {n + 1/8}}} } right) = cr
& = 1 - {1 over 8}left( {sumnolimits_{;n = 7/8}^{;infty } {{1 over n}} - sumnolimits_{;n = 9/8}^{;infty } {{1 over n}} } right) = cr
& = 1 - {1 over 8}left( {sumnolimits_{;n = 7/8}^{;9/8} {{1 over n}} } right) = cr
& = 1 - {1 over 8}left( {psi (9/8) - psi (7/8)} right) = cr
& = 1 - {1 over 8}left( {psi left( {1 + 1/8} right) - psi left( {1 - 1/8} right)} right) = cr
& = 1 - {1 over 8}left( {{1 over {1/8}} + psi left( {1/8} right) - psi left( {1 - 1/8} right)} right) = cr
& = {1 over 8}left( {psi left( {1 - 1/8} right) - psi left( {1/8} right)} right) = cr
& = {1 over 8}left( {pi cot left( {{pi over 8}} right)} right) = cr
& = {{pi left( {1 + sqrt 2 } right)} over 8} cr}
$$
where:
$$
Delta _{,z} psi left( z right) = psi left( {z + 1} right) - psi left( z right) = {1 over z}
$$
is the functional equation for the Digamma;
which implies that Digamma is the Antidelta of $1/z$
$$
eqalign{
& psi left( z right) = Delta _{,z} ^{ - 1} left( {{1 over z}} right) = sumnolimits_z {{1 over z}} quad Rightarrow cr
& Rightarrow quad sumnolimits_{;z = a}^{;b} {{1 over z}} = psi left( b right) - psi left( a right) cr}
$$
and we used the Reflection formula for Digamma
$$
psi left( {1 - z} right) = psi left( z right) + pi cot left( {pi z} right)
$$
Now, the above, suggests a way to solve the integral.
Let's replace $x^8$ with $y$
$$
int_{x = 0}^{,1} {{{1 - x^{,6} } over {1 - x^{,8} }}dx} quad mathop
= limits^{x^{,8} = y} quad {1 over 8}int_{y = 0}^{,1} {{{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }}dy}
$$
then consider that we have
$$
eqalign{
& {{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }} = cr
& = left( {left( {1 - y} right)^{ - 1} y^{, - 7/8} - left( {1 - y} right)^{ - 1} y^{, - 1/8} } right) cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {left( {1 - y} right)^{varepsilon - 1} y^{,1/8 - 1}
- left( {1 - y} right)^{varepsilon - 1} y^{,,7/8 - 1} } right) cr}
$$
so we are ready to use the integral and Gamma representation for the Beta function
$$
eqalign{
& 8 ;int_{x = 0}^{,1} {{{1 - x^{,6} } over {1 - x^{,8} }}dx} = int_{y = 0}^{,1} {{{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }}dy} = cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {int_{y = 0}^{,1} {left( {1 - y} right)^{varepsilon - 1} y^{,1/8 - 1} dy}
- int_{y = 0}^{,1} {left( {1 - y} right)^{varepsilon - 1} y^{,,7/8 - 1} dy} } right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {{rm B}left( {1/8,varepsilon } right) - {rm B}left( {7/8,varepsilon } right)} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {{{Gamma left( {1/8} right)Gamma left( varepsilon right)}
over {Gamma left( {1/8 + varepsilon } right)}}
- {{Gamma left( {7/8} right)Gamma left( varepsilon right)} over {Gamma left( {7/8 + varepsilon } right)}}} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {{{Gamma left( {1/8} right)Gamma left( varepsilon right)}
over {psi left( {1/8} right)varepsilon ;Gamma left( {1/8} right)
+ Gamma left( {1/8} right)}} - {{Gamma left( {7/8} right)Gamma left( varepsilon right)}
over {psi left( {7/8} right)varepsilon ;Gamma left( {7/8} right) + Gamma left( {7/8} right)}}} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {{{Gamma left( varepsilon right)} over {psi left( {1/8} right)varepsilon ; + 1}}
- {{Gamma left( varepsilon right)} over {psi left( {7/8} right)varepsilon ; + 1}}} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} Gamma left( varepsilon right)left( {left( {1 - psi left( {1/8} right)varepsilon ;} right)
- left( {1 - psi left( {7/8} right)varepsilon ;} right)} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} varepsilon ,Gamma left( varepsilon right)left( {psi left( {7/8} right) - psi left( {1/8} right)} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} ,Gamma left( {1 + varepsilon } right)left( {psi left( {7/8} right) - psi left( {1/8} right)} right) = cr
& = psi left( {7/8} right) - psi left( {1/8} right) cr}
$$
which is the same result as above.
Let me add a more straight derivation of the above.
We rewrite the integrand as
$$
eqalign{
& {{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }} = {{y^{, - 7/8} - y^{, - 1/8} } over {left( {1 - y} right)}} = cr
& = {{1 - y^{, - 1/8} - left( {1 - y^{, - 7/8} } right)} over {left( {1 - y} right)}} cr}
$$
and compare with the integral representation of Digamma
$$
psi (s + 1) = - gamma + int_0^1 {{{1 - x^{,s} } over {1 - x}}dx}
$$
edited Dec 18 '18 at 22:24
answered Dec 18 '18 at 16:19
G CabG Cab
20.4k31341
20.4k31341
add a comment |
add a comment |
$begingroup$
HINT: Notice that
$$frac{x^4+x^2+1}{(x^2+1)(x^4+1)}=frac{1}{4}frac{1}{x^2+xsqrt{2}+1}+frac{1}{4}frac{1}{x^2-xsqrt{2}+1}+frac{1}{2}frac{1}{x^2+1}$$
Now we just have to evaluate the integrals
$$I_1=frac{1}{4}int_0^1 frac{dx}{x^2+xsqrt{2}+1}$$
$$I_2=frac{1}{4}int_0^1 frac{dx}{x^2-xsqrt{2}+1}$$
$$I_3=frac{1}{2}int_0^1 frac{dx}{x^2+1}$$
and your sum is given by $I_1+I_2+I_3$. Can you evaluate these?
$endgroup$
add a comment |
$begingroup$
HINT: Notice that
$$frac{x^4+x^2+1}{(x^2+1)(x^4+1)}=frac{1}{4}frac{1}{x^2+xsqrt{2}+1}+frac{1}{4}frac{1}{x^2-xsqrt{2}+1}+frac{1}{2}frac{1}{x^2+1}$$
Now we just have to evaluate the integrals
$$I_1=frac{1}{4}int_0^1 frac{dx}{x^2+xsqrt{2}+1}$$
$$I_2=frac{1}{4}int_0^1 frac{dx}{x^2-xsqrt{2}+1}$$
$$I_3=frac{1}{2}int_0^1 frac{dx}{x^2+1}$$
and your sum is given by $I_1+I_2+I_3$. Can you evaluate these?
$endgroup$
add a comment |
$begingroup$
HINT: Notice that
$$frac{x^4+x^2+1}{(x^2+1)(x^4+1)}=frac{1}{4}frac{1}{x^2+xsqrt{2}+1}+frac{1}{4}frac{1}{x^2-xsqrt{2}+1}+frac{1}{2}frac{1}{x^2+1}$$
Now we just have to evaluate the integrals
$$I_1=frac{1}{4}int_0^1 frac{dx}{x^2+xsqrt{2}+1}$$
$$I_2=frac{1}{4}int_0^1 frac{dx}{x^2-xsqrt{2}+1}$$
$$I_3=frac{1}{2}int_0^1 frac{dx}{x^2+1}$$
and your sum is given by $I_1+I_2+I_3$. Can you evaluate these?
$endgroup$
HINT: Notice that
$$frac{x^4+x^2+1}{(x^2+1)(x^4+1)}=frac{1}{4}frac{1}{x^2+xsqrt{2}+1}+frac{1}{4}frac{1}{x^2-xsqrt{2}+1}+frac{1}{2}frac{1}{x^2+1}$$
Now we just have to evaluate the integrals
$$I_1=frac{1}{4}int_0^1 frac{dx}{x^2+xsqrt{2}+1}$$
$$I_2=frac{1}{4}int_0^1 frac{dx}{x^2-xsqrt{2}+1}$$
$$I_3=frac{1}{2}int_0^1 frac{dx}{x^2+1}$$
and your sum is given by $I_1+I_2+I_3$. Can you evaluate these?
answered Dec 18 '18 at 15:26
FrpzzdFrpzzd
23k841110
23k841110
add a comment |
add a comment |
$begingroup$
The integral is tedious. We have, by Sophie Germain, that $x^4+1=(x^2+sqrt 2 x+1)(x^2-sqrt 2 x+1)$. Now, partial fraction and arctan gives the indefinite to be $frac{1}{4}left(2tan^{-1}x+sqrt{2}left(tan^{-1}left(sqrt{2}x+1right)-tan^{-1}left(1-sqrt{2}xright)right)right)$
$endgroup$
add a comment |
$begingroup$
The integral is tedious. We have, by Sophie Germain, that $x^4+1=(x^2+sqrt 2 x+1)(x^2-sqrt 2 x+1)$. Now, partial fraction and arctan gives the indefinite to be $frac{1}{4}left(2tan^{-1}x+sqrt{2}left(tan^{-1}left(sqrt{2}x+1right)-tan^{-1}left(1-sqrt{2}xright)right)right)$
$endgroup$
add a comment |
$begingroup$
The integral is tedious. We have, by Sophie Germain, that $x^4+1=(x^2+sqrt 2 x+1)(x^2-sqrt 2 x+1)$. Now, partial fraction and arctan gives the indefinite to be $frac{1}{4}left(2tan^{-1}x+sqrt{2}left(tan^{-1}left(sqrt{2}x+1right)-tan^{-1}left(1-sqrt{2}xright)right)right)$
$endgroup$
The integral is tedious. We have, by Sophie Germain, that $x^4+1=(x^2+sqrt 2 x+1)(x^2-sqrt 2 x+1)$. Now, partial fraction and arctan gives the indefinite to be $frac{1}{4}left(2tan^{-1}x+sqrt{2}left(tan^{-1}left(sqrt{2}x+1right)-tan^{-1}left(1-sqrt{2}xright)right)right)$
answered Dec 18 '18 at 15:30
william122william122
54912
54912
add a comment |
add a comment |
$begingroup$
Hint: your fraction is $(x^2+1)^{-1}+frac{x^2}{x^4+1}$, and $frac{x^2}{x^4+1}=frac{ax+b}{x^2-sqrt{2}x+1}+frac{-ax-b}{x^2+sqrt{2}x+1}$ for some real numbers $a,b$.
$endgroup$
add a comment |
$begingroup$
Hint: your fraction is $(x^2+1)^{-1}+frac{x^2}{x^4+1}$, and $frac{x^2}{x^4+1}=frac{ax+b}{x^2-sqrt{2}x+1}+frac{-ax-b}{x^2+sqrt{2}x+1}$ for some real numbers $a,b$.
$endgroup$
add a comment |
$begingroup$
Hint: your fraction is $(x^2+1)^{-1}+frac{x^2}{x^4+1}$, and $frac{x^2}{x^4+1}=frac{ax+b}{x^2-sqrt{2}x+1}+frac{-ax-b}{x^2+sqrt{2}x+1}$ for some real numbers $a,b$.
$endgroup$
Hint: your fraction is $(x^2+1)^{-1}+frac{x^2}{x^4+1}$, and $frac{x^2}{x^4+1}=frac{ax+b}{x^2-sqrt{2}x+1}+frac{-ax-b}{x^2+sqrt{2}x+1}$ for some real numbers $a,b$.
answered Dec 18 '18 at 15:28
MindlackMindlack
4,900211
4,900211
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3045282%2ffind-the-value-of-1-frac17-frac19-frac115-frac117-frac1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
g8ld YS v3Kxupx,G7Rqh96,ZqGVzcYNqQsh2MV9nai31V1bHl6vlJ0pYdPSdWVD FKI,HchSnvaRfYX,bUyqZ h,mTraL2
$begingroup$
Hint: Partial fraction decomposition ($x^4+1$ can be factored over the reals).
$endgroup$
– Michael Burr
Dec 18 '18 at 15:24
2
$begingroup$
Replace $x^2=y$ and use mathworld.wolfram.com/PartialFractionDecomposition.html and replace back $x$
$endgroup$
– lab bhattacharjee
Dec 18 '18 at 15:25
1
$begingroup$
See also math.stackexchange.com/questions/2363639/int-fracx2x4x21-dx/…
$endgroup$
– lab bhattacharjee
Dec 18 '18 at 15:26
$begingroup$
Hey, is this a problem from Joseph edwards integral calculus for beginners? I remember solving this. The answer should equal something like $frac{pi}{8}(1+sqrt{2)}$ or something.
$endgroup$
– crskhr
Dec 18 '18 at 15:28
1
$begingroup$
@Stockfish: Absolutely convergent series.
$endgroup$
– Clayton
Dec 18 '18 at 15:32