Find the value of $1-frac{1}{7}+frac{1}{9}-frac{1}{15}+frac{1}{17}-frac{1}{23}+frac{1}{25}…$

Multi tool use
Multi tool use












9












$begingroup$



Find the value of this :$$1-frac{1}{7}+frac{1}{9}-frac{1}{15}+frac{1}{17}-frac{1}{23}+frac{1}{25}....$$




Try: We can write the above series as



$${S} = int^{1}_{0}bigg[1-x^6+x^8-x^{14}+x^{16}-x^{22}+cdotsbigg]dx$$



$$S = int^{1}_{0}(1-x^6)bigg[1+x^{8}+x^{16}+cdots cdots bigg]dx$$



So $$S = int^{1}_{0}frac{1-x^6}{1-x^{8}}dx = int^{1}_{0}frac{x^4+x^2+1}{(x^2+1)(x^4+1)}dx$$



Now i am struck in that integration.



Did not understand how to solve it



could some help me to solve it. Thanks in advance










share|cite|improve this question











$endgroup$












  • $begingroup$
    Hint: Partial fraction decomposition ($x^4+1$ can be factored over the reals).
    $endgroup$
    – Michael Burr
    Dec 18 '18 at 15:24






  • 2




    $begingroup$
    Replace $x^2=y$ and use mathworld.wolfram.com/PartialFractionDecomposition.html and replace back $x$
    $endgroup$
    – lab bhattacharjee
    Dec 18 '18 at 15:25






  • 1




    $begingroup$
    See also math.stackexchange.com/questions/2363639/int-fracx2x4x21-dx/…
    $endgroup$
    – lab bhattacharjee
    Dec 18 '18 at 15:26










  • $begingroup$
    Hey, is this a problem from Joseph edwards integral calculus for beginners? I remember solving this. The answer should equal something like $frac{pi}{8}(1+sqrt{2)}$ or something.
    $endgroup$
    – crskhr
    Dec 18 '18 at 15:28








  • 1




    $begingroup$
    @Stockfish: Absolutely convergent series.
    $endgroup$
    – Clayton
    Dec 18 '18 at 15:32
















9












$begingroup$



Find the value of this :$$1-frac{1}{7}+frac{1}{9}-frac{1}{15}+frac{1}{17}-frac{1}{23}+frac{1}{25}....$$




Try: We can write the above series as



$${S} = int^{1}_{0}bigg[1-x^6+x^8-x^{14}+x^{16}-x^{22}+cdotsbigg]dx$$



$$S = int^{1}_{0}(1-x^6)bigg[1+x^{8}+x^{16}+cdots cdots bigg]dx$$



So $$S = int^{1}_{0}frac{1-x^6}{1-x^{8}}dx = int^{1}_{0}frac{x^4+x^2+1}{(x^2+1)(x^4+1)}dx$$



Now i am struck in that integration.



Did not understand how to solve it



could some help me to solve it. Thanks in advance










share|cite|improve this question











$endgroup$












  • $begingroup$
    Hint: Partial fraction decomposition ($x^4+1$ can be factored over the reals).
    $endgroup$
    – Michael Burr
    Dec 18 '18 at 15:24






  • 2




    $begingroup$
    Replace $x^2=y$ and use mathworld.wolfram.com/PartialFractionDecomposition.html and replace back $x$
    $endgroup$
    – lab bhattacharjee
    Dec 18 '18 at 15:25






  • 1




    $begingroup$
    See also math.stackexchange.com/questions/2363639/int-fracx2x4x21-dx/…
    $endgroup$
    – lab bhattacharjee
    Dec 18 '18 at 15:26










  • $begingroup$
    Hey, is this a problem from Joseph edwards integral calculus for beginners? I remember solving this. The answer should equal something like $frac{pi}{8}(1+sqrt{2)}$ or something.
    $endgroup$
    – crskhr
    Dec 18 '18 at 15:28








  • 1




    $begingroup$
    @Stockfish: Absolutely convergent series.
    $endgroup$
    – Clayton
    Dec 18 '18 at 15:32














9












9








9


2



$begingroup$



Find the value of this :$$1-frac{1}{7}+frac{1}{9}-frac{1}{15}+frac{1}{17}-frac{1}{23}+frac{1}{25}....$$




Try: We can write the above series as



$${S} = int^{1}_{0}bigg[1-x^6+x^8-x^{14}+x^{16}-x^{22}+cdotsbigg]dx$$



$$S = int^{1}_{0}(1-x^6)bigg[1+x^{8}+x^{16}+cdots cdots bigg]dx$$



So $$S = int^{1}_{0}frac{1-x^6}{1-x^{8}}dx = int^{1}_{0}frac{x^4+x^2+1}{(x^2+1)(x^4+1)}dx$$



Now i am struck in that integration.



Did not understand how to solve it



could some help me to solve it. Thanks in advance










share|cite|improve this question











$endgroup$





Find the value of this :$$1-frac{1}{7}+frac{1}{9}-frac{1}{15}+frac{1}{17}-frac{1}{23}+frac{1}{25}....$$




Try: We can write the above series as



$${S} = int^{1}_{0}bigg[1-x^6+x^8-x^{14}+x^{16}-x^{22}+cdotsbigg]dx$$



$$S = int^{1}_{0}(1-x^6)bigg[1+x^{8}+x^{16}+cdots cdots bigg]dx$$



So $$S = int^{1}_{0}frac{1-x^6}{1-x^{8}}dx = int^{1}_{0}frac{x^4+x^2+1}{(x^2+1)(x^4+1)}dx$$



Now i am struck in that integration.



Did not understand how to solve it



could some help me to solve it. Thanks in advance







integration sequences-and-series definite-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 19 '18 at 6:04









Asaf Karagila

307k33440773




307k33440773










asked Dec 18 '18 at 15:20









DXTDXT

6,0762732




6,0762732












  • $begingroup$
    Hint: Partial fraction decomposition ($x^4+1$ can be factored over the reals).
    $endgroup$
    – Michael Burr
    Dec 18 '18 at 15:24






  • 2




    $begingroup$
    Replace $x^2=y$ and use mathworld.wolfram.com/PartialFractionDecomposition.html and replace back $x$
    $endgroup$
    – lab bhattacharjee
    Dec 18 '18 at 15:25






  • 1




    $begingroup$
    See also math.stackexchange.com/questions/2363639/int-fracx2x4x21-dx/…
    $endgroup$
    – lab bhattacharjee
    Dec 18 '18 at 15:26










  • $begingroup$
    Hey, is this a problem from Joseph edwards integral calculus for beginners? I remember solving this. The answer should equal something like $frac{pi}{8}(1+sqrt{2)}$ or something.
    $endgroup$
    – crskhr
    Dec 18 '18 at 15:28








  • 1




    $begingroup$
    @Stockfish: Absolutely convergent series.
    $endgroup$
    – Clayton
    Dec 18 '18 at 15:32


















  • $begingroup$
    Hint: Partial fraction decomposition ($x^4+1$ can be factored over the reals).
    $endgroup$
    – Michael Burr
    Dec 18 '18 at 15:24






  • 2




    $begingroup$
    Replace $x^2=y$ and use mathworld.wolfram.com/PartialFractionDecomposition.html and replace back $x$
    $endgroup$
    – lab bhattacharjee
    Dec 18 '18 at 15:25






  • 1




    $begingroup$
    See also math.stackexchange.com/questions/2363639/int-fracx2x4x21-dx/…
    $endgroup$
    – lab bhattacharjee
    Dec 18 '18 at 15:26










  • $begingroup$
    Hey, is this a problem from Joseph edwards integral calculus for beginners? I remember solving this. The answer should equal something like $frac{pi}{8}(1+sqrt{2)}$ or something.
    $endgroup$
    – crskhr
    Dec 18 '18 at 15:28








  • 1




    $begingroup$
    @Stockfish: Absolutely convergent series.
    $endgroup$
    – Clayton
    Dec 18 '18 at 15:32
















$begingroup$
Hint: Partial fraction decomposition ($x^4+1$ can be factored over the reals).
$endgroup$
– Michael Burr
Dec 18 '18 at 15:24




$begingroup$
Hint: Partial fraction decomposition ($x^4+1$ can be factored over the reals).
$endgroup$
– Michael Burr
Dec 18 '18 at 15:24




2




2




$begingroup$
Replace $x^2=y$ and use mathworld.wolfram.com/PartialFractionDecomposition.html and replace back $x$
$endgroup$
– lab bhattacharjee
Dec 18 '18 at 15:25




$begingroup$
Replace $x^2=y$ and use mathworld.wolfram.com/PartialFractionDecomposition.html and replace back $x$
$endgroup$
– lab bhattacharjee
Dec 18 '18 at 15:25




1




1




$begingroup$
See also math.stackexchange.com/questions/2363639/int-fracx2x4x21-dx/…
$endgroup$
– lab bhattacharjee
Dec 18 '18 at 15:26




$begingroup$
See also math.stackexchange.com/questions/2363639/int-fracx2x4x21-dx/…
$endgroup$
– lab bhattacharjee
Dec 18 '18 at 15:26












$begingroup$
Hey, is this a problem from Joseph edwards integral calculus for beginners? I remember solving this. The answer should equal something like $frac{pi}{8}(1+sqrt{2)}$ or something.
$endgroup$
– crskhr
Dec 18 '18 at 15:28






$begingroup$
Hey, is this a problem from Joseph edwards integral calculus for beginners? I remember solving this. The answer should equal something like $frac{pi}{8}(1+sqrt{2)}$ or something.
$endgroup$
– crskhr
Dec 18 '18 at 15:28






1




1




$begingroup$
@Stockfish: Absolutely convergent series.
$endgroup$
– Clayton
Dec 18 '18 at 15:32




$begingroup$
@Stockfish: Absolutely convergent series.
$endgroup$
– Clayton
Dec 18 '18 at 15:32










4 Answers
4






active

oldest

votes


















4












$begingroup$

Another approach, which could be useful to check yours through integrals,
is same as per the similar post, using the Digamma function $psi (z)$.
$$
eqalign{
& 1 - {1 over {8 - 1}} + {1 over {8 + 1}} - {1 over {2 cdot 8 - 1}} + {1 over {2 cdot 8 + 1}} + cdots = cr
& = 1 - sumlimits_{1, le ,n} {{1 over {8n - 1}}} + sumlimits_{1, le ,n} {{1 over {8n + 1}}} = cr
& = 1 - {1 over 8}left( {sumlimits_{1, le ,n} {{1 over {n - 1/8}}} - sumlimits_{1, le ,n} {{1 over {n + 1/8}}} } right) = cr
& = 1 - {1 over 8}left( {sumnolimits_{;n = 7/8}^{;infty } {{1 over n}} - sumnolimits_{;n = 9/8}^{;infty } {{1 over n}} } right) = cr
& = 1 - {1 over 8}left( {sumnolimits_{;n = 7/8}^{;9/8} {{1 over n}} } right) = cr
& = 1 - {1 over 8}left( {psi (9/8) - psi (7/8)} right) = cr
& = 1 - {1 over 8}left( {psi left( {1 + 1/8} right) - psi left( {1 - 1/8} right)} right) = cr
& = 1 - {1 over 8}left( {{1 over {1/8}} + psi left( {1/8} right) - psi left( {1 - 1/8} right)} right) = cr
& = {1 over 8}left( {psi left( {1 - 1/8} right) - psi left( {1/8} right)} right) = cr
& = {1 over 8}left( {pi cot left( {{pi over 8}} right)} right) = cr
& = {{pi left( {1 + sqrt 2 } right)} over 8} cr}
$$

where:



$$
Delta _{,z} psi left( z right) = psi left( {z + 1} right) - psi left( z right) = {1 over z}
$$

is the functional equation for the Digamma;

which implies that Digamma is the Antidelta of $1/z$
$$
eqalign{
& psi left( z right) = Delta _{,z} ^{ - 1} left( {{1 over z}} right) = sumnolimits_z {{1 over z}} quad Rightarrow cr
& Rightarrow quad sumnolimits_{;z = a}^{;b} {{1 over z}} = psi left( b right) - psi left( a right) cr}
$$

and we used the Reflection formula for Digamma
$$
psi left( {1 - z} right) = psi left( z right) + pi cot left( {pi z} right)
$$




Now, the above, suggests a way to solve the integral.




Let's replace $x^8$ with $y$
$$
int_{x = 0}^{,1} {{{1 - x^{,6} } over {1 - x^{,8} }}dx} quad mathop
= limits^{x^{,8} = y} quad {1 over 8}int_{y = 0}^{,1} {{{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }}dy}
$$

then consider that we have
$$
eqalign{
& {{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }} = cr
& = left( {left( {1 - y} right)^{ - 1} y^{, - 7/8} - left( {1 - y} right)^{ - 1} y^{, - 1/8} } right) cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {left( {1 - y} right)^{varepsilon - 1} y^{,1/8 - 1}
- left( {1 - y} right)^{varepsilon - 1} y^{,,7/8 - 1} } right) cr}
$$

so we are ready to use the integral and Gamma representation for the Beta function
$$
eqalign{
& 8 ;int_{x = 0}^{,1} {{{1 - x^{,6} } over {1 - x^{,8} }}dx} = int_{y = 0}^{,1} {{{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }}dy} = cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {int_{y = 0}^{,1} {left( {1 - y} right)^{varepsilon - 1} y^{,1/8 - 1} dy}
- int_{y = 0}^{,1} {left( {1 - y} right)^{varepsilon - 1} y^{,,7/8 - 1} dy} } right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {{rm B}left( {1/8,varepsilon } right) - {rm B}left( {7/8,varepsilon } right)} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {{{Gamma left( {1/8} right)Gamma left( varepsilon right)}
over {Gamma left( {1/8 + varepsilon } right)}}
- {{Gamma left( {7/8} right)Gamma left( varepsilon right)} over {Gamma left( {7/8 + varepsilon } right)}}} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {{{Gamma left( {1/8} right)Gamma left( varepsilon right)}
over {psi left( {1/8} right)varepsilon ;Gamma left( {1/8} right)
+ Gamma left( {1/8} right)}} - {{Gamma left( {7/8} right)Gamma left( varepsilon right)}
over {psi left( {7/8} right)varepsilon ;Gamma left( {7/8} right) + Gamma left( {7/8} right)}}} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} left( {{{Gamma left( varepsilon right)} over {psi left( {1/8} right)varepsilon ; + 1}}
- {{Gamma left( varepsilon right)} over {psi left( {7/8} right)varepsilon ; + 1}}} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} Gamma left( varepsilon right)left( {left( {1 - psi left( {1/8} right)varepsilon ;} right)
- left( {1 - psi left( {7/8} right)varepsilon ;} right)} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} varepsilon ,Gamma left( varepsilon right)left( {psi left( {7/8} right) - psi left( {1/8} right)} right) = cr
& = mathop {lim }limits_{varepsilon , to ,0} ,Gamma left( {1 + varepsilon } right)left( {psi left( {7/8} right) - psi left( {1/8} right)} right) = cr
& = psi left( {7/8} right) - psi left( {1/8} right) cr}
$$

which is the same result as above.




Let me add a more straight derivation of the above.




We rewrite the integrand as
$$
eqalign{
& {{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }} = {{y^{, - 7/8} - y^{, - 1/8} } over {left( {1 - y} right)}} = cr
& = {{1 - y^{, - 1/8} - left( {1 - y^{, - 7/8} } right)} over {left( {1 - y} right)}} cr}
$$

and compare with the integral representation of Digamma
$$
psi (s + 1) = - gamma + int_0^1 {{{1 - x^{,s} } over {1 - x}}dx}
$$






share|cite|improve this answer











$endgroup$





















    10












    $begingroup$

    HINT: Notice that
    $$frac{x^4+x^2+1}{(x^2+1)(x^4+1)}=frac{1}{4}frac{1}{x^2+xsqrt{2}+1}+frac{1}{4}frac{1}{x^2-xsqrt{2}+1}+frac{1}{2}frac{1}{x^2+1}$$
    Now we just have to evaluate the integrals
    $$I_1=frac{1}{4}int_0^1 frac{dx}{x^2+xsqrt{2}+1}$$
    $$I_2=frac{1}{4}int_0^1 frac{dx}{x^2-xsqrt{2}+1}$$
    $$I_3=frac{1}{2}int_0^1 frac{dx}{x^2+1}$$
    and your sum is given by $I_1+I_2+I_3$. Can you evaluate these?






    share|cite|improve this answer









    $endgroup$





















      2












      $begingroup$

      The integral is tedious. We have, by Sophie Germain, that $x^4+1=(x^2+sqrt 2 x+1)(x^2-sqrt 2 x+1)$. Now, partial fraction and arctan gives the indefinite to be $frac{1}{4}left(2tan^{-1}x+sqrt{2}left(tan^{-1}left(sqrt{2}x+1right)-tan^{-1}left(1-sqrt{2}xright)right)right)$






      share|cite|improve this answer









      $endgroup$





















        1












        $begingroup$

        Hint: your fraction is $(x^2+1)^{-1}+frac{x^2}{x^4+1}$, and $frac{x^2}{x^4+1}=frac{ax+b}{x^2-sqrt{2}x+1}+frac{-ax-b}{x^2+sqrt{2}x+1}$ for some real numbers $a,b$.






        share|cite|improve this answer









        $endgroup$














          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3045282%2ffind-the-value-of-1-frac17-frac19-frac115-frac117-frac1%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          4 Answers
          4






          active

          oldest

          votes








          4 Answers
          4






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          4












          $begingroup$

          Another approach, which could be useful to check yours through integrals,
          is same as per the similar post, using the Digamma function $psi (z)$.
          $$
          eqalign{
          & 1 - {1 over {8 - 1}} + {1 over {8 + 1}} - {1 over {2 cdot 8 - 1}} + {1 over {2 cdot 8 + 1}} + cdots = cr
          & = 1 - sumlimits_{1, le ,n} {{1 over {8n - 1}}} + sumlimits_{1, le ,n} {{1 over {8n + 1}}} = cr
          & = 1 - {1 over 8}left( {sumlimits_{1, le ,n} {{1 over {n - 1/8}}} - sumlimits_{1, le ,n} {{1 over {n + 1/8}}} } right) = cr
          & = 1 - {1 over 8}left( {sumnolimits_{;n = 7/8}^{;infty } {{1 over n}} - sumnolimits_{;n = 9/8}^{;infty } {{1 over n}} } right) = cr
          & = 1 - {1 over 8}left( {sumnolimits_{;n = 7/8}^{;9/8} {{1 over n}} } right) = cr
          & = 1 - {1 over 8}left( {psi (9/8) - psi (7/8)} right) = cr
          & = 1 - {1 over 8}left( {psi left( {1 + 1/8} right) - psi left( {1 - 1/8} right)} right) = cr
          & = 1 - {1 over 8}left( {{1 over {1/8}} + psi left( {1/8} right) - psi left( {1 - 1/8} right)} right) = cr
          & = {1 over 8}left( {psi left( {1 - 1/8} right) - psi left( {1/8} right)} right) = cr
          & = {1 over 8}left( {pi cot left( {{pi over 8}} right)} right) = cr
          & = {{pi left( {1 + sqrt 2 } right)} over 8} cr}
          $$

          where:



          $$
          Delta _{,z} psi left( z right) = psi left( {z + 1} right) - psi left( z right) = {1 over z}
          $$

          is the functional equation for the Digamma;

          which implies that Digamma is the Antidelta of $1/z$
          $$
          eqalign{
          & psi left( z right) = Delta _{,z} ^{ - 1} left( {{1 over z}} right) = sumnolimits_z {{1 over z}} quad Rightarrow cr
          & Rightarrow quad sumnolimits_{;z = a}^{;b} {{1 over z}} = psi left( b right) - psi left( a right) cr}
          $$

          and we used the Reflection formula for Digamma
          $$
          psi left( {1 - z} right) = psi left( z right) + pi cot left( {pi z} right)
          $$




          Now, the above, suggests a way to solve the integral.




          Let's replace $x^8$ with $y$
          $$
          int_{x = 0}^{,1} {{{1 - x^{,6} } over {1 - x^{,8} }}dx} quad mathop
          = limits^{x^{,8} = y} quad {1 over 8}int_{y = 0}^{,1} {{{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }}dy}
          $$

          then consider that we have
          $$
          eqalign{
          & {{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }} = cr
          & = left( {left( {1 - y} right)^{ - 1} y^{, - 7/8} - left( {1 - y} right)^{ - 1} y^{, - 1/8} } right) cr
          & = mathop {lim }limits_{varepsilon , to ,0} left( {left( {1 - y} right)^{varepsilon - 1} y^{,1/8 - 1}
          - left( {1 - y} right)^{varepsilon - 1} y^{,,7/8 - 1} } right) cr}
          $$

          so we are ready to use the integral and Gamma representation for the Beta function
          $$
          eqalign{
          & 8 ;int_{x = 0}^{,1} {{{1 - x^{,6} } over {1 - x^{,8} }}dx} = int_{y = 0}^{,1} {{{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }}dy} = cr
          & = mathop {lim }limits_{varepsilon , to ,0} left( {int_{y = 0}^{,1} {left( {1 - y} right)^{varepsilon - 1} y^{,1/8 - 1} dy}
          - int_{y = 0}^{,1} {left( {1 - y} right)^{varepsilon - 1} y^{,,7/8 - 1} dy} } right) = cr
          & = mathop {lim }limits_{varepsilon , to ,0} left( {{rm B}left( {1/8,varepsilon } right) - {rm B}left( {7/8,varepsilon } right)} right) = cr
          & = mathop {lim }limits_{varepsilon , to ,0} left( {{{Gamma left( {1/8} right)Gamma left( varepsilon right)}
          over {Gamma left( {1/8 + varepsilon } right)}}
          - {{Gamma left( {7/8} right)Gamma left( varepsilon right)} over {Gamma left( {7/8 + varepsilon } right)}}} right) = cr
          & = mathop {lim }limits_{varepsilon , to ,0} left( {{{Gamma left( {1/8} right)Gamma left( varepsilon right)}
          over {psi left( {1/8} right)varepsilon ;Gamma left( {1/8} right)
          + Gamma left( {1/8} right)}} - {{Gamma left( {7/8} right)Gamma left( varepsilon right)}
          over {psi left( {7/8} right)varepsilon ;Gamma left( {7/8} right) + Gamma left( {7/8} right)}}} right) = cr
          & = mathop {lim }limits_{varepsilon , to ,0} left( {{{Gamma left( varepsilon right)} over {psi left( {1/8} right)varepsilon ; + 1}}
          - {{Gamma left( varepsilon right)} over {psi left( {7/8} right)varepsilon ; + 1}}} right) = cr
          & = mathop {lim }limits_{varepsilon , to ,0} Gamma left( varepsilon right)left( {left( {1 - psi left( {1/8} right)varepsilon ;} right)
          - left( {1 - psi left( {7/8} right)varepsilon ;} right)} right) = cr
          & = mathop {lim }limits_{varepsilon , to ,0} varepsilon ,Gamma left( varepsilon right)left( {psi left( {7/8} right) - psi left( {1/8} right)} right) = cr
          & = mathop {lim }limits_{varepsilon , to ,0} ,Gamma left( {1 + varepsilon } right)left( {psi left( {7/8} right) - psi left( {1/8} right)} right) = cr
          & = psi left( {7/8} right) - psi left( {1/8} right) cr}
          $$

          which is the same result as above.




          Let me add a more straight derivation of the above.




          We rewrite the integrand as
          $$
          eqalign{
          & {{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }} = {{y^{, - 7/8} - y^{, - 1/8} } over {left( {1 - y} right)}} = cr
          & = {{1 - y^{, - 1/8} - left( {1 - y^{, - 7/8} } right)} over {left( {1 - y} right)}} cr}
          $$

          and compare with the integral representation of Digamma
          $$
          psi (s + 1) = - gamma + int_0^1 {{{1 - x^{,s} } over {1 - x}}dx}
          $$






          share|cite|improve this answer











          $endgroup$


















            4












            $begingroup$

            Another approach, which could be useful to check yours through integrals,
            is same as per the similar post, using the Digamma function $psi (z)$.
            $$
            eqalign{
            & 1 - {1 over {8 - 1}} + {1 over {8 + 1}} - {1 over {2 cdot 8 - 1}} + {1 over {2 cdot 8 + 1}} + cdots = cr
            & = 1 - sumlimits_{1, le ,n} {{1 over {8n - 1}}} + sumlimits_{1, le ,n} {{1 over {8n + 1}}} = cr
            & = 1 - {1 over 8}left( {sumlimits_{1, le ,n} {{1 over {n - 1/8}}} - sumlimits_{1, le ,n} {{1 over {n + 1/8}}} } right) = cr
            & = 1 - {1 over 8}left( {sumnolimits_{;n = 7/8}^{;infty } {{1 over n}} - sumnolimits_{;n = 9/8}^{;infty } {{1 over n}} } right) = cr
            & = 1 - {1 over 8}left( {sumnolimits_{;n = 7/8}^{;9/8} {{1 over n}} } right) = cr
            & = 1 - {1 over 8}left( {psi (9/8) - psi (7/8)} right) = cr
            & = 1 - {1 over 8}left( {psi left( {1 + 1/8} right) - psi left( {1 - 1/8} right)} right) = cr
            & = 1 - {1 over 8}left( {{1 over {1/8}} + psi left( {1/8} right) - psi left( {1 - 1/8} right)} right) = cr
            & = {1 over 8}left( {psi left( {1 - 1/8} right) - psi left( {1/8} right)} right) = cr
            & = {1 over 8}left( {pi cot left( {{pi over 8}} right)} right) = cr
            & = {{pi left( {1 + sqrt 2 } right)} over 8} cr}
            $$

            where:



            $$
            Delta _{,z} psi left( z right) = psi left( {z + 1} right) - psi left( z right) = {1 over z}
            $$

            is the functional equation for the Digamma;

            which implies that Digamma is the Antidelta of $1/z$
            $$
            eqalign{
            & psi left( z right) = Delta _{,z} ^{ - 1} left( {{1 over z}} right) = sumnolimits_z {{1 over z}} quad Rightarrow cr
            & Rightarrow quad sumnolimits_{;z = a}^{;b} {{1 over z}} = psi left( b right) - psi left( a right) cr}
            $$

            and we used the Reflection formula for Digamma
            $$
            psi left( {1 - z} right) = psi left( z right) + pi cot left( {pi z} right)
            $$




            Now, the above, suggests a way to solve the integral.




            Let's replace $x^8$ with $y$
            $$
            int_{x = 0}^{,1} {{{1 - x^{,6} } over {1 - x^{,8} }}dx} quad mathop
            = limits^{x^{,8} = y} quad {1 over 8}int_{y = 0}^{,1} {{{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }}dy}
            $$

            then consider that we have
            $$
            eqalign{
            & {{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }} = cr
            & = left( {left( {1 - y} right)^{ - 1} y^{, - 7/8} - left( {1 - y} right)^{ - 1} y^{, - 1/8} } right) cr
            & = mathop {lim }limits_{varepsilon , to ,0} left( {left( {1 - y} right)^{varepsilon - 1} y^{,1/8 - 1}
            - left( {1 - y} right)^{varepsilon - 1} y^{,,7/8 - 1} } right) cr}
            $$

            so we are ready to use the integral and Gamma representation for the Beta function
            $$
            eqalign{
            & 8 ;int_{x = 0}^{,1} {{{1 - x^{,6} } over {1 - x^{,8} }}dx} = int_{y = 0}^{,1} {{{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }}dy} = cr
            & = mathop {lim }limits_{varepsilon , to ,0} left( {int_{y = 0}^{,1} {left( {1 - y} right)^{varepsilon - 1} y^{,1/8 - 1} dy}
            - int_{y = 0}^{,1} {left( {1 - y} right)^{varepsilon - 1} y^{,,7/8 - 1} dy} } right) = cr
            & = mathop {lim }limits_{varepsilon , to ,0} left( {{rm B}left( {1/8,varepsilon } right) - {rm B}left( {7/8,varepsilon } right)} right) = cr
            & = mathop {lim }limits_{varepsilon , to ,0} left( {{{Gamma left( {1/8} right)Gamma left( varepsilon right)}
            over {Gamma left( {1/8 + varepsilon } right)}}
            - {{Gamma left( {7/8} right)Gamma left( varepsilon right)} over {Gamma left( {7/8 + varepsilon } right)}}} right) = cr
            & = mathop {lim }limits_{varepsilon , to ,0} left( {{{Gamma left( {1/8} right)Gamma left( varepsilon right)}
            over {psi left( {1/8} right)varepsilon ;Gamma left( {1/8} right)
            + Gamma left( {1/8} right)}} - {{Gamma left( {7/8} right)Gamma left( varepsilon right)}
            over {psi left( {7/8} right)varepsilon ;Gamma left( {7/8} right) + Gamma left( {7/8} right)}}} right) = cr
            & = mathop {lim }limits_{varepsilon , to ,0} left( {{{Gamma left( varepsilon right)} over {psi left( {1/8} right)varepsilon ; + 1}}
            - {{Gamma left( varepsilon right)} over {psi left( {7/8} right)varepsilon ; + 1}}} right) = cr
            & = mathop {lim }limits_{varepsilon , to ,0} Gamma left( varepsilon right)left( {left( {1 - psi left( {1/8} right)varepsilon ;} right)
            - left( {1 - psi left( {7/8} right)varepsilon ;} right)} right) = cr
            & = mathop {lim }limits_{varepsilon , to ,0} varepsilon ,Gamma left( varepsilon right)left( {psi left( {7/8} right) - psi left( {1/8} right)} right) = cr
            & = mathop {lim }limits_{varepsilon , to ,0} ,Gamma left( {1 + varepsilon } right)left( {psi left( {7/8} right) - psi left( {1/8} right)} right) = cr
            & = psi left( {7/8} right) - psi left( {1/8} right) cr}
            $$

            which is the same result as above.




            Let me add a more straight derivation of the above.




            We rewrite the integrand as
            $$
            eqalign{
            & {{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }} = {{y^{, - 7/8} - y^{, - 1/8} } over {left( {1 - y} right)}} = cr
            & = {{1 - y^{, - 1/8} - left( {1 - y^{, - 7/8} } right)} over {left( {1 - y} right)}} cr}
            $$

            and compare with the integral representation of Digamma
            $$
            psi (s + 1) = - gamma + int_0^1 {{{1 - x^{,s} } over {1 - x}}dx}
            $$






            share|cite|improve this answer











            $endgroup$
















              4












              4








              4





              $begingroup$

              Another approach, which could be useful to check yours through integrals,
              is same as per the similar post, using the Digamma function $psi (z)$.
              $$
              eqalign{
              & 1 - {1 over {8 - 1}} + {1 over {8 + 1}} - {1 over {2 cdot 8 - 1}} + {1 over {2 cdot 8 + 1}} + cdots = cr
              & = 1 - sumlimits_{1, le ,n} {{1 over {8n - 1}}} + sumlimits_{1, le ,n} {{1 over {8n + 1}}} = cr
              & = 1 - {1 over 8}left( {sumlimits_{1, le ,n} {{1 over {n - 1/8}}} - sumlimits_{1, le ,n} {{1 over {n + 1/8}}} } right) = cr
              & = 1 - {1 over 8}left( {sumnolimits_{;n = 7/8}^{;infty } {{1 over n}} - sumnolimits_{;n = 9/8}^{;infty } {{1 over n}} } right) = cr
              & = 1 - {1 over 8}left( {sumnolimits_{;n = 7/8}^{;9/8} {{1 over n}} } right) = cr
              & = 1 - {1 over 8}left( {psi (9/8) - psi (7/8)} right) = cr
              & = 1 - {1 over 8}left( {psi left( {1 + 1/8} right) - psi left( {1 - 1/8} right)} right) = cr
              & = 1 - {1 over 8}left( {{1 over {1/8}} + psi left( {1/8} right) - psi left( {1 - 1/8} right)} right) = cr
              & = {1 over 8}left( {psi left( {1 - 1/8} right) - psi left( {1/8} right)} right) = cr
              & = {1 over 8}left( {pi cot left( {{pi over 8}} right)} right) = cr
              & = {{pi left( {1 + sqrt 2 } right)} over 8} cr}
              $$

              where:



              $$
              Delta _{,z} psi left( z right) = psi left( {z + 1} right) - psi left( z right) = {1 over z}
              $$

              is the functional equation for the Digamma;

              which implies that Digamma is the Antidelta of $1/z$
              $$
              eqalign{
              & psi left( z right) = Delta _{,z} ^{ - 1} left( {{1 over z}} right) = sumnolimits_z {{1 over z}} quad Rightarrow cr
              & Rightarrow quad sumnolimits_{;z = a}^{;b} {{1 over z}} = psi left( b right) - psi left( a right) cr}
              $$

              and we used the Reflection formula for Digamma
              $$
              psi left( {1 - z} right) = psi left( z right) + pi cot left( {pi z} right)
              $$




              Now, the above, suggests a way to solve the integral.




              Let's replace $x^8$ with $y$
              $$
              int_{x = 0}^{,1} {{{1 - x^{,6} } over {1 - x^{,8} }}dx} quad mathop
              = limits^{x^{,8} = y} quad {1 over 8}int_{y = 0}^{,1} {{{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }}dy}
              $$

              then consider that we have
              $$
              eqalign{
              & {{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }} = cr
              & = left( {left( {1 - y} right)^{ - 1} y^{, - 7/8} - left( {1 - y} right)^{ - 1} y^{, - 1/8} } right) cr
              & = mathop {lim }limits_{varepsilon , to ,0} left( {left( {1 - y} right)^{varepsilon - 1} y^{,1/8 - 1}
              - left( {1 - y} right)^{varepsilon - 1} y^{,,7/8 - 1} } right) cr}
              $$

              so we are ready to use the integral and Gamma representation for the Beta function
              $$
              eqalign{
              & 8 ;int_{x = 0}^{,1} {{{1 - x^{,6} } over {1 - x^{,8} }}dx} = int_{y = 0}^{,1} {{{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }}dy} = cr
              & = mathop {lim }limits_{varepsilon , to ,0} left( {int_{y = 0}^{,1} {left( {1 - y} right)^{varepsilon - 1} y^{,1/8 - 1} dy}
              - int_{y = 0}^{,1} {left( {1 - y} right)^{varepsilon - 1} y^{,,7/8 - 1} dy} } right) = cr
              & = mathop {lim }limits_{varepsilon , to ,0} left( {{rm B}left( {1/8,varepsilon } right) - {rm B}left( {7/8,varepsilon } right)} right) = cr
              & = mathop {lim }limits_{varepsilon , to ,0} left( {{{Gamma left( {1/8} right)Gamma left( varepsilon right)}
              over {Gamma left( {1/8 + varepsilon } right)}}
              - {{Gamma left( {7/8} right)Gamma left( varepsilon right)} over {Gamma left( {7/8 + varepsilon } right)}}} right) = cr
              & = mathop {lim }limits_{varepsilon , to ,0} left( {{{Gamma left( {1/8} right)Gamma left( varepsilon right)}
              over {psi left( {1/8} right)varepsilon ;Gamma left( {1/8} right)
              + Gamma left( {1/8} right)}} - {{Gamma left( {7/8} right)Gamma left( varepsilon right)}
              over {psi left( {7/8} right)varepsilon ;Gamma left( {7/8} right) + Gamma left( {7/8} right)}}} right) = cr
              & = mathop {lim }limits_{varepsilon , to ,0} left( {{{Gamma left( varepsilon right)} over {psi left( {1/8} right)varepsilon ; + 1}}
              - {{Gamma left( varepsilon right)} over {psi left( {7/8} right)varepsilon ; + 1}}} right) = cr
              & = mathop {lim }limits_{varepsilon , to ,0} Gamma left( varepsilon right)left( {left( {1 - psi left( {1/8} right)varepsilon ;} right)
              - left( {1 - psi left( {7/8} right)varepsilon ;} right)} right) = cr
              & = mathop {lim }limits_{varepsilon , to ,0} varepsilon ,Gamma left( varepsilon right)left( {psi left( {7/8} right) - psi left( {1/8} right)} right) = cr
              & = mathop {lim }limits_{varepsilon , to ,0} ,Gamma left( {1 + varepsilon } right)left( {psi left( {7/8} right) - psi left( {1/8} right)} right) = cr
              & = psi left( {7/8} right) - psi left( {1/8} right) cr}
              $$

              which is the same result as above.




              Let me add a more straight derivation of the above.




              We rewrite the integrand as
              $$
              eqalign{
              & {{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }} = {{y^{, - 7/8} - y^{, - 1/8} } over {left( {1 - y} right)}} = cr
              & = {{1 - y^{, - 1/8} - left( {1 - y^{, - 7/8} } right)} over {left( {1 - y} right)}} cr}
              $$

              and compare with the integral representation of Digamma
              $$
              psi (s + 1) = - gamma + int_0^1 {{{1 - x^{,s} } over {1 - x}}dx}
              $$






              share|cite|improve this answer











              $endgroup$



              Another approach, which could be useful to check yours through integrals,
              is same as per the similar post, using the Digamma function $psi (z)$.
              $$
              eqalign{
              & 1 - {1 over {8 - 1}} + {1 over {8 + 1}} - {1 over {2 cdot 8 - 1}} + {1 over {2 cdot 8 + 1}} + cdots = cr
              & = 1 - sumlimits_{1, le ,n} {{1 over {8n - 1}}} + sumlimits_{1, le ,n} {{1 over {8n + 1}}} = cr
              & = 1 - {1 over 8}left( {sumlimits_{1, le ,n} {{1 over {n - 1/8}}} - sumlimits_{1, le ,n} {{1 over {n + 1/8}}} } right) = cr
              & = 1 - {1 over 8}left( {sumnolimits_{;n = 7/8}^{;infty } {{1 over n}} - sumnolimits_{;n = 9/8}^{;infty } {{1 over n}} } right) = cr
              & = 1 - {1 over 8}left( {sumnolimits_{;n = 7/8}^{;9/8} {{1 over n}} } right) = cr
              & = 1 - {1 over 8}left( {psi (9/8) - psi (7/8)} right) = cr
              & = 1 - {1 over 8}left( {psi left( {1 + 1/8} right) - psi left( {1 - 1/8} right)} right) = cr
              & = 1 - {1 over 8}left( {{1 over {1/8}} + psi left( {1/8} right) - psi left( {1 - 1/8} right)} right) = cr
              & = {1 over 8}left( {psi left( {1 - 1/8} right) - psi left( {1/8} right)} right) = cr
              & = {1 over 8}left( {pi cot left( {{pi over 8}} right)} right) = cr
              & = {{pi left( {1 + sqrt 2 } right)} over 8} cr}
              $$

              where:



              $$
              Delta _{,z} psi left( z right) = psi left( {z + 1} right) - psi left( z right) = {1 over z}
              $$

              is the functional equation for the Digamma;

              which implies that Digamma is the Antidelta of $1/z$
              $$
              eqalign{
              & psi left( z right) = Delta _{,z} ^{ - 1} left( {{1 over z}} right) = sumnolimits_z {{1 over z}} quad Rightarrow cr
              & Rightarrow quad sumnolimits_{;z = a}^{;b} {{1 over z}} = psi left( b right) - psi left( a right) cr}
              $$

              and we used the Reflection formula for Digamma
              $$
              psi left( {1 - z} right) = psi left( z right) + pi cot left( {pi z} right)
              $$




              Now, the above, suggests a way to solve the integral.




              Let's replace $x^8$ with $y$
              $$
              int_{x = 0}^{,1} {{{1 - x^{,6} } over {1 - x^{,8} }}dx} quad mathop
              = limits^{x^{,8} = y} quad {1 over 8}int_{y = 0}^{,1} {{{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }}dy}
              $$

              then consider that we have
              $$
              eqalign{
              & {{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }} = cr
              & = left( {left( {1 - y} right)^{ - 1} y^{, - 7/8} - left( {1 - y} right)^{ - 1} y^{, - 1/8} } right) cr
              & = mathop {lim }limits_{varepsilon , to ,0} left( {left( {1 - y} right)^{varepsilon - 1} y^{,1/8 - 1}
              - left( {1 - y} right)^{varepsilon - 1} y^{,,7/8 - 1} } right) cr}
              $$

              so we are ready to use the integral and Gamma representation for the Beta function
              $$
              eqalign{
              & 8 ;int_{x = 0}^{,1} {{{1 - x^{,6} } over {1 - x^{,8} }}dx} = int_{y = 0}^{,1} {{{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }}dy} = cr
              & = mathop {lim }limits_{varepsilon , to ,0} left( {int_{y = 0}^{,1} {left( {1 - y} right)^{varepsilon - 1} y^{,1/8 - 1} dy}
              - int_{y = 0}^{,1} {left( {1 - y} right)^{varepsilon - 1} y^{,,7/8 - 1} dy} } right) = cr
              & = mathop {lim }limits_{varepsilon , to ,0} left( {{rm B}left( {1/8,varepsilon } right) - {rm B}left( {7/8,varepsilon } right)} right) = cr
              & = mathop {lim }limits_{varepsilon , to ,0} left( {{{Gamma left( {1/8} right)Gamma left( varepsilon right)}
              over {Gamma left( {1/8 + varepsilon } right)}}
              - {{Gamma left( {7/8} right)Gamma left( varepsilon right)} over {Gamma left( {7/8 + varepsilon } right)}}} right) = cr
              & = mathop {lim }limits_{varepsilon , to ,0} left( {{{Gamma left( {1/8} right)Gamma left( varepsilon right)}
              over {psi left( {1/8} right)varepsilon ;Gamma left( {1/8} right)
              + Gamma left( {1/8} right)}} - {{Gamma left( {7/8} right)Gamma left( varepsilon right)}
              over {psi left( {7/8} right)varepsilon ;Gamma left( {7/8} right) + Gamma left( {7/8} right)}}} right) = cr
              & = mathop {lim }limits_{varepsilon , to ,0} left( {{{Gamma left( varepsilon right)} over {psi left( {1/8} right)varepsilon ; + 1}}
              - {{Gamma left( varepsilon right)} over {psi left( {7/8} right)varepsilon ; + 1}}} right) = cr
              & = mathop {lim }limits_{varepsilon , to ,0} Gamma left( varepsilon right)left( {left( {1 - psi left( {1/8} right)varepsilon ;} right)
              - left( {1 - psi left( {7/8} right)varepsilon ;} right)} right) = cr
              & = mathop {lim }limits_{varepsilon , to ,0} varepsilon ,Gamma left( varepsilon right)left( {psi left( {7/8} right) - psi left( {1/8} right)} right) = cr
              & = mathop {lim }limits_{varepsilon , to ,0} ,Gamma left( {1 + varepsilon } right)left( {psi left( {7/8} right) - psi left( {1/8} right)} right) = cr
              & = psi left( {7/8} right) - psi left( {1/8} right) cr}
              $$

              which is the same result as above.




              Let me add a more straight derivation of the above.




              We rewrite the integrand as
              $$
              eqalign{
              & {{1 - y^{,3/4} } over {left( {1 - y} right)y^{,7/8} }} = {{y^{, - 7/8} - y^{, - 1/8} } over {left( {1 - y} right)}} = cr
              & = {{1 - y^{, - 1/8} - left( {1 - y^{, - 7/8} } right)} over {left( {1 - y} right)}} cr}
              $$

              and compare with the integral representation of Digamma
              $$
              psi (s + 1) = - gamma + int_0^1 {{{1 - x^{,s} } over {1 - x}}dx}
              $$







              share|cite|improve this answer














              share|cite|improve this answer



              share|cite|improve this answer








              edited Dec 18 '18 at 22:24

























              answered Dec 18 '18 at 16:19









              G CabG Cab

              20.4k31341




              20.4k31341























                  10












                  $begingroup$

                  HINT: Notice that
                  $$frac{x^4+x^2+1}{(x^2+1)(x^4+1)}=frac{1}{4}frac{1}{x^2+xsqrt{2}+1}+frac{1}{4}frac{1}{x^2-xsqrt{2}+1}+frac{1}{2}frac{1}{x^2+1}$$
                  Now we just have to evaluate the integrals
                  $$I_1=frac{1}{4}int_0^1 frac{dx}{x^2+xsqrt{2}+1}$$
                  $$I_2=frac{1}{4}int_0^1 frac{dx}{x^2-xsqrt{2}+1}$$
                  $$I_3=frac{1}{2}int_0^1 frac{dx}{x^2+1}$$
                  and your sum is given by $I_1+I_2+I_3$. Can you evaluate these?






                  share|cite|improve this answer









                  $endgroup$


















                    10












                    $begingroup$

                    HINT: Notice that
                    $$frac{x^4+x^2+1}{(x^2+1)(x^4+1)}=frac{1}{4}frac{1}{x^2+xsqrt{2}+1}+frac{1}{4}frac{1}{x^2-xsqrt{2}+1}+frac{1}{2}frac{1}{x^2+1}$$
                    Now we just have to evaluate the integrals
                    $$I_1=frac{1}{4}int_0^1 frac{dx}{x^2+xsqrt{2}+1}$$
                    $$I_2=frac{1}{4}int_0^1 frac{dx}{x^2-xsqrt{2}+1}$$
                    $$I_3=frac{1}{2}int_0^1 frac{dx}{x^2+1}$$
                    and your sum is given by $I_1+I_2+I_3$. Can you evaluate these?






                    share|cite|improve this answer









                    $endgroup$
















                      10












                      10








                      10





                      $begingroup$

                      HINT: Notice that
                      $$frac{x^4+x^2+1}{(x^2+1)(x^4+1)}=frac{1}{4}frac{1}{x^2+xsqrt{2}+1}+frac{1}{4}frac{1}{x^2-xsqrt{2}+1}+frac{1}{2}frac{1}{x^2+1}$$
                      Now we just have to evaluate the integrals
                      $$I_1=frac{1}{4}int_0^1 frac{dx}{x^2+xsqrt{2}+1}$$
                      $$I_2=frac{1}{4}int_0^1 frac{dx}{x^2-xsqrt{2}+1}$$
                      $$I_3=frac{1}{2}int_0^1 frac{dx}{x^2+1}$$
                      and your sum is given by $I_1+I_2+I_3$. Can you evaluate these?






                      share|cite|improve this answer









                      $endgroup$



                      HINT: Notice that
                      $$frac{x^4+x^2+1}{(x^2+1)(x^4+1)}=frac{1}{4}frac{1}{x^2+xsqrt{2}+1}+frac{1}{4}frac{1}{x^2-xsqrt{2}+1}+frac{1}{2}frac{1}{x^2+1}$$
                      Now we just have to evaluate the integrals
                      $$I_1=frac{1}{4}int_0^1 frac{dx}{x^2+xsqrt{2}+1}$$
                      $$I_2=frac{1}{4}int_0^1 frac{dx}{x^2-xsqrt{2}+1}$$
                      $$I_3=frac{1}{2}int_0^1 frac{dx}{x^2+1}$$
                      and your sum is given by $I_1+I_2+I_3$. Can you evaluate these?







                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered Dec 18 '18 at 15:26









                      FrpzzdFrpzzd

                      23k841110




                      23k841110























                          2












                          $begingroup$

                          The integral is tedious. We have, by Sophie Germain, that $x^4+1=(x^2+sqrt 2 x+1)(x^2-sqrt 2 x+1)$. Now, partial fraction and arctan gives the indefinite to be $frac{1}{4}left(2tan^{-1}x+sqrt{2}left(tan^{-1}left(sqrt{2}x+1right)-tan^{-1}left(1-sqrt{2}xright)right)right)$






                          share|cite|improve this answer









                          $endgroup$


















                            2












                            $begingroup$

                            The integral is tedious. We have, by Sophie Germain, that $x^4+1=(x^2+sqrt 2 x+1)(x^2-sqrt 2 x+1)$. Now, partial fraction and arctan gives the indefinite to be $frac{1}{4}left(2tan^{-1}x+sqrt{2}left(tan^{-1}left(sqrt{2}x+1right)-tan^{-1}left(1-sqrt{2}xright)right)right)$






                            share|cite|improve this answer









                            $endgroup$
















                              2












                              2








                              2





                              $begingroup$

                              The integral is tedious. We have, by Sophie Germain, that $x^4+1=(x^2+sqrt 2 x+1)(x^2-sqrt 2 x+1)$. Now, partial fraction and arctan gives the indefinite to be $frac{1}{4}left(2tan^{-1}x+sqrt{2}left(tan^{-1}left(sqrt{2}x+1right)-tan^{-1}left(1-sqrt{2}xright)right)right)$






                              share|cite|improve this answer









                              $endgroup$



                              The integral is tedious. We have, by Sophie Germain, that $x^4+1=(x^2+sqrt 2 x+1)(x^2-sqrt 2 x+1)$. Now, partial fraction and arctan gives the indefinite to be $frac{1}{4}left(2tan^{-1}x+sqrt{2}left(tan^{-1}left(sqrt{2}x+1right)-tan^{-1}left(1-sqrt{2}xright)right)right)$







                              share|cite|improve this answer












                              share|cite|improve this answer



                              share|cite|improve this answer










                              answered Dec 18 '18 at 15:30









                              william122william122

                              54912




                              54912























                                  1












                                  $begingroup$

                                  Hint: your fraction is $(x^2+1)^{-1}+frac{x^2}{x^4+1}$, and $frac{x^2}{x^4+1}=frac{ax+b}{x^2-sqrt{2}x+1}+frac{-ax-b}{x^2+sqrt{2}x+1}$ for some real numbers $a,b$.






                                  share|cite|improve this answer









                                  $endgroup$


















                                    1












                                    $begingroup$

                                    Hint: your fraction is $(x^2+1)^{-1}+frac{x^2}{x^4+1}$, and $frac{x^2}{x^4+1}=frac{ax+b}{x^2-sqrt{2}x+1}+frac{-ax-b}{x^2+sqrt{2}x+1}$ for some real numbers $a,b$.






                                    share|cite|improve this answer









                                    $endgroup$
















                                      1












                                      1








                                      1





                                      $begingroup$

                                      Hint: your fraction is $(x^2+1)^{-1}+frac{x^2}{x^4+1}$, and $frac{x^2}{x^4+1}=frac{ax+b}{x^2-sqrt{2}x+1}+frac{-ax-b}{x^2+sqrt{2}x+1}$ for some real numbers $a,b$.






                                      share|cite|improve this answer









                                      $endgroup$



                                      Hint: your fraction is $(x^2+1)^{-1}+frac{x^2}{x^4+1}$, and $frac{x^2}{x^4+1}=frac{ax+b}{x^2-sqrt{2}x+1}+frac{-ax-b}{x^2+sqrt{2}x+1}$ for some real numbers $a,b$.







                                      share|cite|improve this answer












                                      share|cite|improve this answer



                                      share|cite|improve this answer










                                      answered Dec 18 '18 at 15:28









                                      MindlackMindlack

                                      4,900211




                                      4,900211






























                                          draft saved

                                          draft discarded




















































                                          Thanks for contributing an answer to Mathematics Stack Exchange!


                                          • Please be sure to answer the question. Provide details and share your research!

                                          But avoid



                                          • Asking for help, clarification, or responding to other answers.

                                          • Making statements based on opinion; back them up with references or personal experience.


                                          Use MathJax to format equations. MathJax reference.


                                          To learn more, see our tips on writing great answers.




                                          draft saved


                                          draft discarded














                                          StackExchange.ready(
                                          function () {
                                          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3045282%2ffind-the-value-of-1-frac17-frac19-frac115-frac117-frac1%23new-answer', 'question_page');
                                          }
                                          );

                                          Post as a guest















                                          Required, but never shown





















































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown

































                                          Required, but never shown














                                          Required, but never shown












                                          Required, but never shown







                                          Required, but never shown







                                          g8ld YS v3Kxupx,G7Rqh96,ZqGVzcYNqQsh2MV9nai31V1bHl6vlJ0pYdPSdWVD FKI,HchSnvaRfYX,bUyqZ h,mTraL2
                                          pDBE7ZWXbH rJWfXf4CJ i0ITcoz,GkkGq,1Aht M,cmBuIx,c4MCoN,j

                                          Popular posts from this blog

                                          Plaza Victoria

                                          Puebla de Zaragoza

                                          Change location of user folders through cmd or PowerShell?