Integrate $int_{-infty}^infty {rm erfc} left( frac{x}{sqrt{2}} right) e^{-frac{(x-mu)^2}{2 sigma^2}} dx$
$begingroup$
Does the integral
begin{align}
int_{-infty}^infty {rm erfc} left( frac{x}{sqrt{2}} right) e^{-frac{(x-mu)^2}{2 sigma^2}} dx
end{align}
have a close form expression.
I found that for $mu=0$
begin{align}
int_{-infty}^infty {rm erfc} left( frac{x}{sqrt{2}} right) e^{-frac{x^2}{2 sigma^2}} dx = sigma sqrt{2 pi}
end{align}
Can this be done for $mu neq 0$?
calculus integration improper-integrals error-function
$endgroup$
add a comment |
$begingroup$
Does the integral
begin{align}
int_{-infty}^infty {rm erfc} left( frac{x}{sqrt{2}} right) e^{-frac{(x-mu)^2}{2 sigma^2}} dx
end{align}
have a close form expression.
I found that for $mu=0$
begin{align}
int_{-infty}^infty {rm erfc} left( frac{x}{sqrt{2}} right) e^{-frac{x^2}{2 sigma^2}} dx = sigma sqrt{2 pi}
end{align}
Can this be done for $mu neq 0$?
calculus integration improper-integrals error-function
$endgroup$
add a comment |
$begingroup$
Does the integral
begin{align}
int_{-infty}^infty {rm erfc} left( frac{x}{sqrt{2}} right) e^{-frac{(x-mu)^2}{2 sigma^2}} dx
end{align}
have a close form expression.
I found that for $mu=0$
begin{align}
int_{-infty}^infty {rm erfc} left( frac{x}{sqrt{2}} right) e^{-frac{x^2}{2 sigma^2}} dx = sigma sqrt{2 pi}
end{align}
Can this be done for $mu neq 0$?
calculus integration improper-integrals error-function
$endgroup$
Does the integral
begin{align}
int_{-infty}^infty {rm erfc} left( frac{x}{sqrt{2}} right) e^{-frac{(x-mu)^2}{2 sigma^2}} dx
end{align}
have a close form expression.
I found that for $mu=0$
begin{align}
int_{-infty}^infty {rm erfc} left( frac{x}{sqrt{2}} right) e^{-frac{x^2}{2 sigma^2}} dx = sigma sqrt{2 pi}
end{align}
Can this be done for $mu neq 0$?
calculus integration improper-integrals error-function
calculus integration improper-integrals error-function
edited Dec 19 '18 at 11:44
Namaste
1
1
asked Jun 8 '17 at 18:32
BobyBoby
1,0691930
1,0691930
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
If $Z$ is a standard normal random variable, $text{erfc}(x/sqrt{2}) = 2 mathbb P(Z > x)$. Thus if $X$ is another normal random variable, independent of $Z$, with mean $mu$ and standard deviation $sigma$, your integral is
$$ 2 sigma sqrt{2pi} mathbb P(Z > X) = 2 sigma sqrt{2pi} mathbb P(Z-X > 0)$$
Now $Z - X$ is normal with mean $-mu$ and standard deviation $sqrt{1+sigma^2}$, so this should be
$$ sigma sqrt{2pi}; text{erfc}left(frac{mu}{sqrt{2 + 2 sigma^2}}right)$$
$endgroup$
$begingroup$
Very nice proof. Thanks.
$endgroup$
– Boby
Jun 8 '17 at 19:45
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2315082%2fintegrate-int-infty-infty-rm-erfc-left-fracx-sqrt2-right-e%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
If $Z$ is a standard normal random variable, $text{erfc}(x/sqrt{2}) = 2 mathbb P(Z > x)$. Thus if $X$ is another normal random variable, independent of $Z$, with mean $mu$ and standard deviation $sigma$, your integral is
$$ 2 sigma sqrt{2pi} mathbb P(Z > X) = 2 sigma sqrt{2pi} mathbb P(Z-X > 0)$$
Now $Z - X$ is normal with mean $-mu$ and standard deviation $sqrt{1+sigma^2}$, so this should be
$$ sigma sqrt{2pi}; text{erfc}left(frac{mu}{sqrt{2 + 2 sigma^2}}right)$$
$endgroup$
$begingroup$
Very nice proof. Thanks.
$endgroup$
– Boby
Jun 8 '17 at 19:45
add a comment |
$begingroup$
If $Z$ is a standard normal random variable, $text{erfc}(x/sqrt{2}) = 2 mathbb P(Z > x)$. Thus if $X$ is another normal random variable, independent of $Z$, with mean $mu$ and standard deviation $sigma$, your integral is
$$ 2 sigma sqrt{2pi} mathbb P(Z > X) = 2 sigma sqrt{2pi} mathbb P(Z-X > 0)$$
Now $Z - X$ is normal with mean $-mu$ and standard deviation $sqrt{1+sigma^2}$, so this should be
$$ sigma sqrt{2pi}; text{erfc}left(frac{mu}{sqrt{2 + 2 sigma^2}}right)$$
$endgroup$
$begingroup$
Very nice proof. Thanks.
$endgroup$
– Boby
Jun 8 '17 at 19:45
add a comment |
$begingroup$
If $Z$ is a standard normal random variable, $text{erfc}(x/sqrt{2}) = 2 mathbb P(Z > x)$. Thus if $X$ is another normal random variable, independent of $Z$, with mean $mu$ and standard deviation $sigma$, your integral is
$$ 2 sigma sqrt{2pi} mathbb P(Z > X) = 2 sigma sqrt{2pi} mathbb P(Z-X > 0)$$
Now $Z - X$ is normal with mean $-mu$ and standard deviation $sqrt{1+sigma^2}$, so this should be
$$ sigma sqrt{2pi}; text{erfc}left(frac{mu}{sqrt{2 + 2 sigma^2}}right)$$
$endgroup$
If $Z$ is a standard normal random variable, $text{erfc}(x/sqrt{2}) = 2 mathbb P(Z > x)$. Thus if $X$ is another normal random variable, independent of $Z$, with mean $mu$ and standard deviation $sigma$, your integral is
$$ 2 sigma sqrt{2pi} mathbb P(Z > X) = 2 sigma sqrt{2pi} mathbb P(Z-X > 0)$$
Now $Z - X$ is normal with mean $-mu$ and standard deviation $sqrt{1+sigma^2}$, so this should be
$$ sigma sqrt{2pi}; text{erfc}left(frac{mu}{sqrt{2 + 2 sigma^2}}right)$$
answered Jun 8 '17 at 19:20
Robert IsraelRobert Israel
330k23219473
330k23219473
$begingroup$
Very nice proof. Thanks.
$endgroup$
– Boby
Jun 8 '17 at 19:45
add a comment |
$begingroup$
Very nice proof. Thanks.
$endgroup$
– Boby
Jun 8 '17 at 19:45
$begingroup$
Very nice proof. Thanks.
$endgroup$
– Boby
Jun 8 '17 at 19:45
$begingroup$
Very nice proof. Thanks.
$endgroup$
– Boby
Jun 8 '17 at 19:45
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2315082%2fintegrate-int-infty-infty-rm-erfc-left-fracx-sqrt2-right-e%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown