Calculate the variance of $f_X(x)$
$begingroup$
We have $$fleft(xright)=0.8left(frac{1}{5sqrt{2pi}}e^{-frac{1}{50}left(x-50right)^2}right)+0.2left(frac{1}{8sqrt{2pi}}e^{-frac{1}{128}left(x-60right)^2}right)$$
This can be written in a more nicer way:
$$gleft(xright)=0.8left(frac{1}{5sqrt{2pi}}e^{-frac{1}{2}left(frac{x-50}{5}right)^2}right)+0.2left(frac{1}{8sqrt{2pi}}e^{-frac{1}{2}left(frac{x-60}{8}right)^2}right)$$
To calculate the expectation, it is equal to $0.8(50) + 0.2(60)=52$, since we see that this is essentially $0.8N(mu=50, sigma^2=25)+0.2N(mu=60, sigma^2=64)$
We get confirmation from desmos:
What about variance though?
$var(0.8N(mu=50, sigma^2=25)+0.2N(mu=60, sigma^2=64)=0.8^2(25)+0.2^2(64)=18.56$
But also, $v(x)=E(x^2)-(E(x))^2$
Verifying the above on desmos, I get a different answer:
About $48.8$, so I am not sure where I went wrong. I know the integral is entered correctly on desmos, but where have I gone wrong with the variance?
probability probability-distributions normal-distribution variance
$endgroup$
add a comment |
$begingroup$
We have $$fleft(xright)=0.8left(frac{1}{5sqrt{2pi}}e^{-frac{1}{50}left(x-50right)^2}right)+0.2left(frac{1}{8sqrt{2pi}}e^{-frac{1}{128}left(x-60right)^2}right)$$
This can be written in a more nicer way:
$$gleft(xright)=0.8left(frac{1}{5sqrt{2pi}}e^{-frac{1}{2}left(frac{x-50}{5}right)^2}right)+0.2left(frac{1}{8sqrt{2pi}}e^{-frac{1}{2}left(frac{x-60}{8}right)^2}right)$$
To calculate the expectation, it is equal to $0.8(50) + 0.2(60)=52$, since we see that this is essentially $0.8N(mu=50, sigma^2=25)+0.2N(mu=60, sigma^2=64)$
We get confirmation from desmos:
What about variance though?
$var(0.8N(mu=50, sigma^2=25)+0.2N(mu=60, sigma^2=64)=0.8^2(25)+0.2^2(64)=18.56$
But also, $v(x)=E(x^2)-(E(x))^2$
Verifying the above on desmos, I get a different answer:
About $48.8$, so I am not sure where I went wrong. I know the integral is entered correctly on desmos, but where have I gone wrong with the variance?
probability probability-distributions normal-distribution variance
$endgroup$
add a comment |
$begingroup$
We have $$fleft(xright)=0.8left(frac{1}{5sqrt{2pi}}e^{-frac{1}{50}left(x-50right)^2}right)+0.2left(frac{1}{8sqrt{2pi}}e^{-frac{1}{128}left(x-60right)^2}right)$$
This can be written in a more nicer way:
$$gleft(xright)=0.8left(frac{1}{5sqrt{2pi}}e^{-frac{1}{2}left(frac{x-50}{5}right)^2}right)+0.2left(frac{1}{8sqrt{2pi}}e^{-frac{1}{2}left(frac{x-60}{8}right)^2}right)$$
To calculate the expectation, it is equal to $0.8(50) + 0.2(60)=52$, since we see that this is essentially $0.8N(mu=50, sigma^2=25)+0.2N(mu=60, sigma^2=64)$
We get confirmation from desmos:
What about variance though?
$var(0.8N(mu=50, sigma^2=25)+0.2N(mu=60, sigma^2=64)=0.8^2(25)+0.2^2(64)=18.56$
But also, $v(x)=E(x^2)-(E(x))^2$
Verifying the above on desmos, I get a different answer:
About $48.8$, so I am not sure where I went wrong. I know the integral is entered correctly on desmos, but where have I gone wrong with the variance?
probability probability-distributions normal-distribution variance
$endgroup$
We have $$fleft(xright)=0.8left(frac{1}{5sqrt{2pi}}e^{-frac{1}{50}left(x-50right)^2}right)+0.2left(frac{1}{8sqrt{2pi}}e^{-frac{1}{128}left(x-60right)^2}right)$$
This can be written in a more nicer way:
$$gleft(xright)=0.8left(frac{1}{5sqrt{2pi}}e^{-frac{1}{2}left(frac{x-50}{5}right)^2}right)+0.2left(frac{1}{8sqrt{2pi}}e^{-frac{1}{2}left(frac{x-60}{8}right)^2}right)$$
To calculate the expectation, it is equal to $0.8(50) + 0.2(60)=52$, since we see that this is essentially $0.8N(mu=50, sigma^2=25)+0.2N(mu=60, sigma^2=64)$
We get confirmation from desmos:
What about variance though?
$var(0.8N(mu=50, sigma^2=25)+0.2N(mu=60, sigma^2=64)=0.8^2(25)+0.2^2(64)=18.56$
But also, $v(x)=E(x^2)-(E(x))^2$
Verifying the above on desmos, I get a different answer:
About $48.8$, so I am not sure where I went wrong. I know the integral is entered correctly on desmos, but where have I gone wrong with the variance?
probability probability-distributions normal-distribution variance
probability probability-distributions normal-distribution variance
asked Dec 16 '18 at 22:26
K Split XK Split X
4,30421233
4,30421233
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
$f_X$ is the density of the random variable $UZ_1+(1-U)Z_2$ where $Usim Bernoulli(0.8), Z_1sim N(50,25)$ and $Z_2sim N(60,64)$ and they are mutually independent.
Then $Var(UZ_1+(1-U)Z_2)=E[Var(UZ_1+(1-U)Z_2|U)]+Var[E(UZ_1+(1-U)Z_2|U)].$
$E[Var(UZ_1+(1-U)Z_2|U)]=E[U^2Var(Z_1|U)+(1-U)^2Var(Z_2|U)]=E[U^2]Var(Z_1)+E[(1-U)^2]Var(Z_2)=E[U]times 25+E[1-U]times 64=0.8times 25+0.2times 64=32.8.$
$Var[E(UZ_1+(1-U)Z_2|U)]=Var[UE(Z_1)+(1-U)E(Z_2)]=Var[50U+60(1-U)]=Var[-10U]=100times 0.8times 0.2=16.$
$endgroup$
add a comment |
$begingroup$
for a function of the form
$$
f(x) = a frac{1}{sqrt{2pi sigma_1^2}}e^{(x - mu_1)^2/2sigma_1^2} + (1- a)frac{1}{sqrt{2pi sigma_2^2}}e^{(x - mu_2)^2/2sigma_2^2}
$$
you have
$$
int_{-infty}^{+infty} {rm d}x~ f(x) = a + (1 - a) = 1
$$
$$
int_{-infty}^{+infty} {rm d}x~ x f(x) = amu_1 + (1 - a)mu_2 tag{1}
$$
and
$$
int_{-infty}^{+infty} {rm d}x~ x^2 f(x) = a(mu_1^2 + sigma_1^2) + (1 - a)(mu_2^2 + sigma_2^2) tag{2}
$$
So that
$$
mathbb{V}{rm ar}[X] = int_{-infty}^{+infty} {rm d}x~ x^2 f(x) - left(
int_{-infty}^{+infty} {rm d}x~ x f(x) right)^2 = a(sigma_1 - sigma_2)(sigma_1 + sigma_2) + sigma_2^2 + a(1 - a)(mu_1 - mu_2)^2 tag{3}
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3043266%2fcalculate-the-variance-of-f-xx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$f_X$ is the density of the random variable $UZ_1+(1-U)Z_2$ where $Usim Bernoulli(0.8), Z_1sim N(50,25)$ and $Z_2sim N(60,64)$ and they are mutually independent.
Then $Var(UZ_1+(1-U)Z_2)=E[Var(UZ_1+(1-U)Z_2|U)]+Var[E(UZ_1+(1-U)Z_2|U)].$
$E[Var(UZ_1+(1-U)Z_2|U)]=E[U^2Var(Z_1|U)+(1-U)^2Var(Z_2|U)]=E[U^2]Var(Z_1)+E[(1-U)^2]Var(Z_2)=E[U]times 25+E[1-U]times 64=0.8times 25+0.2times 64=32.8.$
$Var[E(UZ_1+(1-U)Z_2|U)]=Var[UE(Z_1)+(1-U)E(Z_2)]=Var[50U+60(1-U)]=Var[-10U]=100times 0.8times 0.2=16.$
$endgroup$
add a comment |
$begingroup$
$f_X$ is the density of the random variable $UZ_1+(1-U)Z_2$ where $Usim Bernoulli(0.8), Z_1sim N(50,25)$ and $Z_2sim N(60,64)$ and they are mutually independent.
Then $Var(UZ_1+(1-U)Z_2)=E[Var(UZ_1+(1-U)Z_2|U)]+Var[E(UZ_1+(1-U)Z_2|U)].$
$E[Var(UZ_1+(1-U)Z_2|U)]=E[U^2Var(Z_1|U)+(1-U)^2Var(Z_2|U)]=E[U^2]Var(Z_1)+E[(1-U)^2]Var(Z_2)=E[U]times 25+E[1-U]times 64=0.8times 25+0.2times 64=32.8.$
$Var[E(UZ_1+(1-U)Z_2|U)]=Var[UE(Z_1)+(1-U)E(Z_2)]=Var[50U+60(1-U)]=Var[-10U]=100times 0.8times 0.2=16.$
$endgroup$
add a comment |
$begingroup$
$f_X$ is the density of the random variable $UZ_1+(1-U)Z_2$ where $Usim Bernoulli(0.8), Z_1sim N(50,25)$ and $Z_2sim N(60,64)$ and they are mutually independent.
Then $Var(UZ_1+(1-U)Z_2)=E[Var(UZ_1+(1-U)Z_2|U)]+Var[E(UZ_1+(1-U)Z_2|U)].$
$E[Var(UZ_1+(1-U)Z_2|U)]=E[U^2Var(Z_1|U)+(1-U)^2Var(Z_2|U)]=E[U^2]Var(Z_1)+E[(1-U)^2]Var(Z_2)=E[U]times 25+E[1-U]times 64=0.8times 25+0.2times 64=32.8.$
$Var[E(UZ_1+(1-U)Z_2|U)]=Var[UE(Z_1)+(1-U)E(Z_2)]=Var[50U+60(1-U)]=Var[-10U]=100times 0.8times 0.2=16.$
$endgroup$
$f_X$ is the density of the random variable $UZ_1+(1-U)Z_2$ where $Usim Bernoulli(0.8), Z_1sim N(50,25)$ and $Z_2sim N(60,64)$ and they are mutually independent.
Then $Var(UZ_1+(1-U)Z_2)=E[Var(UZ_1+(1-U)Z_2|U)]+Var[E(UZ_1+(1-U)Z_2|U)].$
$E[Var(UZ_1+(1-U)Z_2|U)]=E[U^2Var(Z_1|U)+(1-U)^2Var(Z_2|U)]=E[U^2]Var(Z_1)+E[(1-U)^2]Var(Z_2)=E[U]times 25+E[1-U]times 64=0.8times 25+0.2times 64=32.8.$
$Var[E(UZ_1+(1-U)Z_2|U)]=Var[UE(Z_1)+(1-U)E(Z_2)]=Var[50U+60(1-U)]=Var[-10U]=100times 0.8times 0.2=16.$
answered Dec 16 '18 at 23:30
John_WickJohn_Wick
1,616111
1,616111
add a comment |
add a comment |
$begingroup$
for a function of the form
$$
f(x) = a frac{1}{sqrt{2pi sigma_1^2}}e^{(x - mu_1)^2/2sigma_1^2} + (1- a)frac{1}{sqrt{2pi sigma_2^2}}e^{(x - mu_2)^2/2sigma_2^2}
$$
you have
$$
int_{-infty}^{+infty} {rm d}x~ f(x) = a + (1 - a) = 1
$$
$$
int_{-infty}^{+infty} {rm d}x~ x f(x) = amu_1 + (1 - a)mu_2 tag{1}
$$
and
$$
int_{-infty}^{+infty} {rm d}x~ x^2 f(x) = a(mu_1^2 + sigma_1^2) + (1 - a)(mu_2^2 + sigma_2^2) tag{2}
$$
So that
$$
mathbb{V}{rm ar}[X] = int_{-infty}^{+infty} {rm d}x~ x^2 f(x) - left(
int_{-infty}^{+infty} {rm d}x~ x f(x) right)^2 = a(sigma_1 - sigma_2)(sigma_1 + sigma_2) + sigma_2^2 + a(1 - a)(mu_1 - mu_2)^2 tag{3}
$$
$endgroup$
add a comment |
$begingroup$
for a function of the form
$$
f(x) = a frac{1}{sqrt{2pi sigma_1^2}}e^{(x - mu_1)^2/2sigma_1^2} + (1- a)frac{1}{sqrt{2pi sigma_2^2}}e^{(x - mu_2)^2/2sigma_2^2}
$$
you have
$$
int_{-infty}^{+infty} {rm d}x~ f(x) = a + (1 - a) = 1
$$
$$
int_{-infty}^{+infty} {rm d}x~ x f(x) = amu_1 + (1 - a)mu_2 tag{1}
$$
and
$$
int_{-infty}^{+infty} {rm d}x~ x^2 f(x) = a(mu_1^2 + sigma_1^2) + (1 - a)(mu_2^2 + sigma_2^2) tag{2}
$$
So that
$$
mathbb{V}{rm ar}[X] = int_{-infty}^{+infty} {rm d}x~ x^2 f(x) - left(
int_{-infty}^{+infty} {rm d}x~ x f(x) right)^2 = a(sigma_1 - sigma_2)(sigma_1 + sigma_2) + sigma_2^2 + a(1 - a)(mu_1 - mu_2)^2 tag{3}
$$
$endgroup$
add a comment |
$begingroup$
for a function of the form
$$
f(x) = a frac{1}{sqrt{2pi sigma_1^2}}e^{(x - mu_1)^2/2sigma_1^2} + (1- a)frac{1}{sqrt{2pi sigma_2^2}}e^{(x - mu_2)^2/2sigma_2^2}
$$
you have
$$
int_{-infty}^{+infty} {rm d}x~ f(x) = a + (1 - a) = 1
$$
$$
int_{-infty}^{+infty} {rm d}x~ x f(x) = amu_1 + (1 - a)mu_2 tag{1}
$$
and
$$
int_{-infty}^{+infty} {rm d}x~ x^2 f(x) = a(mu_1^2 + sigma_1^2) + (1 - a)(mu_2^2 + sigma_2^2) tag{2}
$$
So that
$$
mathbb{V}{rm ar}[X] = int_{-infty}^{+infty} {rm d}x~ x^2 f(x) - left(
int_{-infty}^{+infty} {rm d}x~ x f(x) right)^2 = a(sigma_1 - sigma_2)(sigma_1 + sigma_2) + sigma_2^2 + a(1 - a)(mu_1 - mu_2)^2 tag{3}
$$
$endgroup$
for a function of the form
$$
f(x) = a frac{1}{sqrt{2pi sigma_1^2}}e^{(x - mu_1)^2/2sigma_1^2} + (1- a)frac{1}{sqrt{2pi sigma_2^2}}e^{(x - mu_2)^2/2sigma_2^2}
$$
you have
$$
int_{-infty}^{+infty} {rm d}x~ f(x) = a + (1 - a) = 1
$$
$$
int_{-infty}^{+infty} {rm d}x~ x f(x) = amu_1 + (1 - a)mu_2 tag{1}
$$
and
$$
int_{-infty}^{+infty} {rm d}x~ x^2 f(x) = a(mu_1^2 + sigma_1^2) + (1 - a)(mu_2^2 + sigma_2^2) tag{2}
$$
So that
$$
mathbb{V}{rm ar}[X] = int_{-infty}^{+infty} {rm d}x~ x^2 f(x) - left(
int_{-infty}^{+infty} {rm d}x~ x f(x) right)^2 = a(sigma_1 - sigma_2)(sigma_1 + sigma_2) + sigma_2^2 + a(1 - a)(mu_1 - mu_2)^2 tag{3}
$$
answered Dec 16 '18 at 22:52
caveraccaverac
14.8k31130
14.8k31130
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3043266%2fcalculate-the-variance-of-f-xx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown