On independence of R.V
$begingroup$
We know that if $X$ and $Y$ have joint density $f(x,y)$ and if the ranges of $X$ and $Y$ are not dependent then X,Y are independent iff $f(x,y)= f(x) g(y)$ for some f,g .
Now, can we get same result, if we instead have
$$ P(X leq x, Y > y) = f(x) g(y) $$
That is, if we have the above, does this imply that the random variables are independent?
probability
$endgroup$
add a comment |
$begingroup$
We know that if $X$ and $Y$ have joint density $f(x,y)$ and if the ranges of $X$ and $Y$ are not dependent then X,Y are independent iff $f(x,y)= f(x) g(y)$ for some f,g .
Now, can we get same result, if we instead have
$$ P(X leq x, Y > y) = f(x) g(y) $$
That is, if we have the above, does this imply that the random variables are independent?
probability
$endgroup$
$begingroup$
Did you mean $P(Xleq x,Y>y)=P(Xleq x)P(Y>y)$? If so then yes you will have same result.
$endgroup$
– John_Wick
Dec 16 '18 at 23:06
$begingroup$
i meant for some function f and g
$endgroup$
– Jimmy Sabater
Dec 16 '18 at 23:09
add a comment |
$begingroup$
We know that if $X$ and $Y$ have joint density $f(x,y)$ and if the ranges of $X$ and $Y$ are not dependent then X,Y are independent iff $f(x,y)= f(x) g(y)$ for some f,g .
Now, can we get same result, if we instead have
$$ P(X leq x, Y > y) = f(x) g(y) $$
That is, if we have the above, does this imply that the random variables are independent?
probability
$endgroup$
We know that if $X$ and $Y$ have joint density $f(x,y)$ and if the ranges of $X$ and $Y$ are not dependent then X,Y are independent iff $f(x,y)= f(x) g(y)$ for some f,g .
Now, can we get same result, if we instead have
$$ P(X leq x, Y > y) = f(x) g(y) $$
That is, if we have the above, does this imply that the random variables are independent?
probability
probability
edited Dec 16 '18 at 23:56
Bernard
123k741116
123k741116
asked Dec 16 '18 at 22:56
Jimmy SabaterJimmy Sabater
3,023325
3,023325
$begingroup$
Did you mean $P(Xleq x,Y>y)=P(Xleq x)P(Y>y)$? If so then yes you will have same result.
$endgroup$
– John_Wick
Dec 16 '18 at 23:06
$begingroup$
i meant for some function f and g
$endgroup$
– Jimmy Sabater
Dec 16 '18 at 23:09
add a comment |
$begingroup$
Did you mean $P(Xleq x,Y>y)=P(Xleq x)P(Y>y)$? If so then yes you will have same result.
$endgroup$
– John_Wick
Dec 16 '18 at 23:06
$begingroup$
i meant for some function f and g
$endgroup$
– Jimmy Sabater
Dec 16 '18 at 23:09
$begingroup$
Did you mean $P(Xleq x,Y>y)=P(Xleq x)P(Y>y)$? If so then yes you will have same result.
$endgroup$
– John_Wick
Dec 16 '18 at 23:06
$begingroup$
Did you mean $P(Xleq x,Y>y)=P(Xleq x)P(Y>y)$? If so then yes you will have same result.
$endgroup$
– John_Wick
Dec 16 '18 at 23:06
$begingroup$
i meant for some function f and g
$endgroup$
– Jimmy Sabater
Dec 16 '18 at 23:09
$begingroup$
i meant for some function f and g
$endgroup$
– Jimmy Sabater
Dec 16 '18 at 23:09
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
$P(Xleq x, Y>y)=f(x)g(y)$ implies $P(Xleq x)=lim_{yrightarrow -infty}P(Xleq x, Y>y)=f(x)g(-infty).$ Similarly taking $xrightarrow infty$ we get $P(Y>y)=f(infty)g(y).$ Also taking both the limits simultaneously we get $f(infty)g(-infty)=lim_{yrightarrow -infty}lim_{xrightarrow infty}P(Xleq x, Y>y)=1.$
So we get $P(Xleq x)P(Y>y)=f(x)g(-infty)f(infty)g(y)=f(x)g(y)=P(Xleq x, Y>y).$ From there just taking derivatives w.r.t. both $x$ and $y$ we get $f_{X,Y}(x,y)=f_{X}(x)f_Y(y).$
$endgroup$
$begingroup$
Passing by infinities is not needed, simply use $$P(Xleqslant x,Y>y)=P(Xleqslant x)-P(Xleqslant x,Yleqslant y)$$
$endgroup$
– Did
Dec 17 '18 at 0:36
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3043304%2fon-independence-of-r-v%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$P(Xleq x, Y>y)=f(x)g(y)$ implies $P(Xleq x)=lim_{yrightarrow -infty}P(Xleq x, Y>y)=f(x)g(-infty).$ Similarly taking $xrightarrow infty$ we get $P(Y>y)=f(infty)g(y).$ Also taking both the limits simultaneously we get $f(infty)g(-infty)=lim_{yrightarrow -infty}lim_{xrightarrow infty}P(Xleq x, Y>y)=1.$
So we get $P(Xleq x)P(Y>y)=f(x)g(-infty)f(infty)g(y)=f(x)g(y)=P(Xleq x, Y>y).$ From there just taking derivatives w.r.t. both $x$ and $y$ we get $f_{X,Y}(x,y)=f_{X}(x)f_Y(y).$
$endgroup$
$begingroup$
Passing by infinities is not needed, simply use $$P(Xleqslant x,Y>y)=P(Xleqslant x)-P(Xleqslant x,Yleqslant y)$$
$endgroup$
– Did
Dec 17 '18 at 0:36
add a comment |
$begingroup$
$P(Xleq x, Y>y)=f(x)g(y)$ implies $P(Xleq x)=lim_{yrightarrow -infty}P(Xleq x, Y>y)=f(x)g(-infty).$ Similarly taking $xrightarrow infty$ we get $P(Y>y)=f(infty)g(y).$ Also taking both the limits simultaneously we get $f(infty)g(-infty)=lim_{yrightarrow -infty}lim_{xrightarrow infty}P(Xleq x, Y>y)=1.$
So we get $P(Xleq x)P(Y>y)=f(x)g(-infty)f(infty)g(y)=f(x)g(y)=P(Xleq x, Y>y).$ From there just taking derivatives w.r.t. both $x$ and $y$ we get $f_{X,Y}(x,y)=f_{X}(x)f_Y(y).$
$endgroup$
$begingroup$
Passing by infinities is not needed, simply use $$P(Xleqslant x,Y>y)=P(Xleqslant x)-P(Xleqslant x,Yleqslant y)$$
$endgroup$
– Did
Dec 17 '18 at 0:36
add a comment |
$begingroup$
$P(Xleq x, Y>y)=f(x)g(y)$ implies $P(Xleq x)=lim_{yrightarrow -infty}P(Xleq x, Y>y)=f(x)g(-infty).$ Similarly taking $xrightarrow infty$ we get $P(Y>y)=f(infty)g(y).$ Also taking both the limits simultaneously we get $f(infty)g(-infty)=lim_{yrightarrow -infty}lim_{xrightarrow infty}P(Xleq x, Y>y)=1.$
So we get $P(Xleq x)P(Y>y)=f(x)g(-infty)f(infty)g(y)=f(x)g(y)=P(Xleq x, Y>y).$ From there just taking derivatives w.r.t. both $x$ and $y$ we get $f_{X,Y}(x,y)=f_{X}(x)f_Y(y).$
$endgroup$
$P(Xleq x, Y>y)=f(x)g(y)$ implies $P(Xleq x)=lim_{yrightarrow -infty}P(Xleq x, Y>y)=f(x)g(-infty).$ Similarly taking $xrightarrow infty$ we get $P(Y>y)=f(infty)g(y).$ Also taking both the limits simultaneously we get $f(infty)g(-infty)=lim_{yrightarrow -infty}lim_{xrightarrow infty}P(Xleq x, Y>y)=1.$
So we get $P(Xleq x)P(Y>y)=f(x)g(-infty)f(infty)g(y)=f(x)g(y)=P(Xleq x, Y>y).$ From there just taking derivatives w.r.t. both $x$ and $y$ we get $f_{X,Y}(x,y)=f_{X}(x)f_Y(y).$
answered Dec 16 '18 at 23:19
John_WickJohn_Wick
1,616111
1,616111
$begingroup$
Passing by infinities is not needed, simply use $$P(Xleqslant x,Y>y)=P(Xleqslant x)-P(Xleqslant x,Yleqslant y)$$
$endgroup$
– Did
Dec 17 '18 at 0:36
add a comment |
$begingroup$
Passing by infinities is not needed, simply use $$P(Xleqslant x,Y>y)=P(Xleqslant x)-P(Xleqslant x,Yleqslant y)$$
$endgroup$
– Did
Dec 17 '18 at 0:36
$begingroup$
Passing by infinities is not needed, simply use $$P(Xleqslant x,Y>y)=P(Xleqslant x)-P(Xleqslant x,Yleqslant y)$$
$endgroup$
– Did
Dec 17 '18 at 0:36
$begingroup$
Passing by infinities is not needed, simply use $$P(Xleqslant x,Y>y)=P(Xleqslant x)-P(Xleqslant x,Yleqslant y)$$
$endgroup$
– Did
Dec 17 '18 at 0:36
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3043304%2fon-independence-of-r-v%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Did you mean $P(Xleq x,Y>y)=P(Xleq x)P(Y>y)$? If so then yes you will have same result.
$endgroup$
– John_Wick
Dec 16 '18 at 23:06
$begingroup$
i meant for some function f and g
$endgroup$
– Jimmy Sabater
Dec 16 '18 at 23:09