On independence of R.V












0












$begingroup$


We know that if $X$ and $Y$ have joint density $f(x,y)$ and if the ranges of $X$ and $Y$ are not dependent then X,Y are independent iff $f(x,y)= f(x) g(y)$ for some f,g .



Now, can we get same result, if we instead have



$$ P(X leq x, Y > y) = f(x) g(y) $$



That is, if we have the above, does this imply that the random variables are independent?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Did you mean $P(Xleq x,Y>y)=P(Xleq x)P(Y>y)$? If so then yes you will have same result.
    $endgroup$
    – John_Wick
    Dec 16 '18 at 23:06










  • $begingroup$
    i meant for some function f and g
    $endgroup$
    – Jimmy Sabater
    Dec 16 '18 at 23:09


















0












$begingroup$


We know that if $X$ and $Y$ have joint density $f(x,y)$ and if the ranges of $X$ and $Y$ are not dependent then X,Y are independent iff $f(x,y)= f(x) g(y)$ for some f,g .



Now, can we get same result, if we instead have



$$ P(X leq x, Y > y) = f(x) g(y) $$



That is, if we have the above, does this imply that the random variables are independent?










share|cite|improve this question











$endgroup$












  • $begingroup$
    Did you mean $P(Xleq x,Y>y)=P(Xleq x)P(Y>y)$? If so then yes you will have same result.
    $endgroup$
    – John_Wick
    Dec 16 '18 at 23:06










  • $begingroup$
    i meant for some function f and g
    $endgroup$
    – Jimmy Sabater
    Dec 16 '18 at 23:09
















0












0








0





$begingroup$


We know that if $X$ and $Y$ have joint density $f(x,y)$ and if the ranges of $X$ and $Y$ are not dependent then X,Y are independent iff $f(x,y)= f(x) g(y)$ for some f,g .



Now, can we get same result, if we instead have



$$ P(X leq x, Y > y) = f(x) g(y) $$



That is, if we have the above, does this imply that the random variables are independent?










share|cite|improve this question











$endgroup$




We know that if $X$ and $Y$ have joint density $f(x,y)$ and if the ranges of $X$ and $Y$ are not dependent then X,Y are independent iff $f(x,y)= f(x) g(y)$ for some f,g .



Now, can we get same result, if we instead have



$$ P(X leq x, Y > y) = f(x) g(y) $$



That is, if we have the above, does this imply that the random variables are independent?







probability






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Dec 16 '18 at 23:56









Bernard

123k741116




123k741116










asked Dec 16 '18 at 22:56









Jimmy SabaterJimmy Sabater

3,023325




3,023325












  • $begingroup$
    Did you mean $P(Xleq x,Y>y)=P(Xleq x)P(Y>y)$? If so then yes you will have same result.
    $endgroup$
    – John_Wick
    Dec 16 '18 at 23:06










  • $begingroup$
    i meant for some function f and g
    $endgroup$
    – Jimmy Sabater
    Dec 16 '18 at 23:09




















  • $begingroup$
    Did you mean $P(Xleq x,Y>y)=P(Xleq x)P(Y>y)$? If so then yes you will have same result.
    $endgroup$
    – John_Wick
    Dec 16 '18 at 23:06










  • $begingroup$
    i meant for some function f and g
    $endgroup$
    – Jimmy Sabater
    Dec 16 '18 at 23:09


















$begingroup$
Did you mean $P(Xleq x,Y>y)=P(Xleq x)P(Y>y)$? If so then yes you will have same result.
$endgroup$
– John_Wick
Dec 16 '18 at 23:06




$begingroup$
Did you mean $P(Xleq x,Y>y)=P(Xleq x)P(Y>y)$? If so then yes you will have same result.
$endgroup$
– John_Wick
Dec 16 '18 at 23:06












$begingroup$
i meant for some function f and g
$endgroup$
– Jimmy Sabater
Dec 16 '18 at 23:09






$begingroup$
i meant for some function f and g
$endgroup$
– Jimmy Sabater
Dec 16 '18 at 23:09












1 Answer
1






active

oldest

votes


















2












$begingroup$

$P(Xleq x, Y>y)=f(x)g(y)$ implies $P(Xleq x)=lim_{yrightarrow -infty}P(Xleq x, Y>y)=f(x)g(-infty).$ Similarly taking $xrightarrow infty$ we get $P(Y>y)=f(infty)g(y).$ Also taking both the limits simultaneously we get $f(infty)g(-infty)=lim_{yrightarrow -infty}lim_{xrightarrow infty}P(Xleq x, Y>y)=1.$



So we get $P(Xleq x)P(Y>y)=f(x)g(-infty)f(infty)g(y)=f(x)g(y)=P(Xleq x, Y>y).$ From there just taking derivatives w.r.t. both $x$ and $y$ we get $f_{X,Y}(x,y)=f_{X}(x)f_Y(y).$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Passing by infinities is not needed, simply use $$P(Xleqslant x,Y>y)=P(Xleqslant x)-P(Xleqslant x,Yleqslant y)$$
    $endgroup$
    – Did
    Dec 17 '18 at 0:36











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3043304%2fon-independence-of-r-v%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









2












$begingroup$

$P(Xleq x, Y>y)=f(x)g(y)$ implies $P(Xleq x)=lim_{yrightarrow -infty}P(Xleq x, Y>y)=f(x)g(-infty).$ Similarly taking $xrightarrow infty$ we get $P(Y>y)=f(infty)g(y).$ Also taking both the limits simultaneously we get $f(infty)g(-infty)=lim_{yrightarrow -infty}lim_{xrightarrow infty}P(Xleq x, Y>y)=1.$



So we get $P(Xleq x)P(Y>y)=f(x)g(-infty)f(infty)g(y)=f(x)g(y)=P(Xleq x, Y>y).$ From there just taking derivatives w.r.t. both $x$ and $y$ we get $f_{X,Y}(x,y)=f_{X}(x)f_Y(y).$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Passing by infinities is not needed, simply use $$P(Xleqslant x,Y>y)=P(Xleqslant x)-P(Xleqslant x,Yleqslant y)$$
    $endgroup$
    – Did
    Dec 17 '18 at 0:36
















2












$begingroup$

$P(Xleq x, Y>y)=f(x)g(y)$ implies $P(Xleq x)=lim_{yrightarrow -infty}P(Xleq x, Y>y)=f(x)g(-infty).$ Similarly taking $xrightarrow infty$ we get $P(Y>y)=f(infty)g(y).$ Also taking both the limits simultaneously we get $f(infty)g(-infty)=lim_{yrightarrow -infty}lim_{xrightarrow infty}P(Xleq x, Y>y)=1.$



So we get $P(Xleq x)P(Y>y)=f(x)g(-infty)f(infty)g(y)=f(x)g(y)=P(Xleq x, Y>y).$ From there just taking derivatives w.r.t. both $x$ and $y$ we get $f_{X,Y}(x,y)=f_{X}(x)f_Y(y).$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Passing by infinities is not needed, simply use $$P(Xleqslant x,Y>y)=P(Xleqslant x)-P(Xleqslant x,Yleqslant y)$$
    $endgroup$
    – Did
    Dec 17 '18 at 0:36














2












2








2





$begingroup$

$P(Xleq x, Y>y)=f(x)g(y)$ implies $P(Xleq x)=lim_{yrightarrow -infty}P(Xleq x, Y>y)=f(x)g(-infty).$ Similarly taking $xrightarrow infty$ we get $P(Y>y)=f(infty)g(y).$ Also taking both the limits simultaneously we get $f(infty)g(-infty)=lim_{yrightarrow -infty}lim_{xrightarrow infty}P(Xleq x, Y>y)=1.$



So we get $P(Xleq x)P(Y>y)=f(x)g(-infty)f(infty)g(y)=f(x)g(y)=P(Xleq x, Y>y).$ From there just taking derivatives w.r.t. both $x$ and $y$ we get $f_{X,Y}(x,y)=f_{X}(x)f_Y(y).$






share|cite|improve this answer









$endgroup$



$P(Xleq x, Y>y)=f(x)g(y)$ implies $P(Xleq x)=lim_{yrightarrow -infty}P(Xleq x, Y>y)=f(x)g(-infty).$ Similarly taking $xrightarrow infty$ we get $P(Y>y)=f(infty)g(y).$ Also taking both the limits simultaneously we get $f(infty)g(-infty)=lim_{yrightarrow -infty}lim_{xrightarrow infty}P(Xleq x, Y>y)=1.$



So we get $P(Xleq x)P(Y>y)=f(x)g(-infty)f(infty)g(y)=f(x)g(y)=P(Xleq x, Y>y).$ From there just taking derivatives w.r.t. both $x$ and $y$ we get $f_{X,Y}(x,y)=f_{X}(x)f_Y(y).$







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Dec 16 '18 at 23:19









John_WickJohn_Wick

1,616111




1,616111












  • $begingroup$
    Passing by infinities is not needed, simply use $$P(Xleqslant x,Y>y)=P(Xleqslant x)-P(Xleqslant x,Yleqslant y)$$
    $endgroup$
    – Did
    Dec 17 '18 at 0:36


















  • $begingroup$
    Passing by infinities is not needed, simply use $$P(Xleqslant x,Y>y)=P(Xleqslant x)-P(Xleqslant x,Yleqslant y)$$
    $endgroup$
    – Did
    Dec 17 '18 at 0:36
















$begingroup$
Passing by infinities is not needed, simply use $$P(Xleqslant x,Y>y)=P(Xleqslant x)-P(Xleqslant x,Yleqslant y)$$
$endgroup$
– Did
Dec 17 '18 at 0:36




$begingroup$
Passing by infinities is not needed, simply use $$P(Xleqslant x,Y>y)=P(Xleqslant x)-P(Xleqslant x,Yleqslant y)$$
$endgroup$
– Did
Dec 17 '18 at 0:36


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3043304%2fon-independence-of-r-v%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Plaza Victoria

Puebla de Zaragoza

Musa