Counting certain elements in lists












5












$begingroup$


I have the following data set:



n1 = 1000;
data1 = {#, {RandomInteger[3, 20]}} & /@ Range[n1];

Dimensions@data1
{1000, 2}


I want to count how often data1[[All, 2]] == 1.



My solution:



result1 = Table[
Count[Flatten@(data1[[i, 2]]), u_ /; u == 1],
{i, 1, n1}
];

Dimensions@result1
{1000}


Now I have 50 appended lists of data1 (= data2).



n3 = 50;

data2 = Array[0 &, n3];

Do[
data2[[i]] = {#, {RandomInteger[3, 20]}} & /@ Range[n1];
, {i, 1, n3}
];

Dimensions@data2
{50, 1000, 2}


I want to count how often data2[[j, i, 2]] == 1, where {i, 1, n1} and {j, 1, n3}.



My solution for this more complicated list:



result2 = Array[0 &, n3];

Do[
result2[[j]] =
Table[
Count[Flatten@(data2[[j, i, 2]]), u_ /; u == 1],
{i, 1, n1}
];
, {j, 1, n3}
];

Dimensions@result2
{50, 1000}


How can I replace the Do loops in both cases and improve the performance?










share|improve this question











$endgroup$

















    5












    $begingroup$


    I have the following data set:



    n1 = 1000;
    data1 = {#, {RandomInteger[3, 20]}} & /@ Range[n1];

    Dimensions@data1
    {1000, 2}


    I want to count how often data1[[All, 2]] == 1.



    My solution:



    result1 = Table[
    Count[Flatten@(data1[[i, 2]]), u_ /; u == 1],
    {i, 1, n1}
    ];

    Dimensions@result1
    {1000}


    Now I have 50 appended lists of data1 (= data2).



    n3 = 50;

    data2 = Array[0 &, n3];

    Do[
    data2[[i]] = {#, {RandomInteger[3, 20]}} & /@ Range[n1];
    , {i, 1, n3}
    ];

    Dimensions@data2
    {50, 1000, 2}


    I want to count how often data2[[j, i, 2]] == 1, where {i, 1, n1} and {j, 1, n3}.



    My solution for this more complicated list:



    result2 = Array[0 &, n3];

    Do[
    result2[[j]] =
    Table[
    Count[Flatten@(data2[[j, i, 2]]), u_ /; u == 1],
    {i, 1, n1}
    ];
    , {j, 1, n3}
    ];

    Dimensions@result2
    {50, 1000}


    How can I replace the Do loops in both cases and improve the performance?










    share|improve this question











    $endgroup$















      5












      5








      5





      $begingroup$


      I have the following data set:



      n1 = 1000;
      data1 = {#, {RandomInteger[3, 20]}} & /@ Range[n1];

      Dimensions@data1
      {1000, 2}


      I want to count how often data1[[All, 2]] == 1.



      My solution:



      result1 = Table[
      Count[Flatten@(data1[[i, 2]]), u_ /; u == 1],
      {i, 1, n1}
      ];

      Dimensions@result1
      {1000}


      Now I have 50 appended lists of data1 (= data2).



      n3 = 50;

      data2 = Array[0 &, n3];

      Do[
      data2[[i]] = {#, {RandomInteger[3, 20]}} & /@ Range[n1];
      , {i, 1, n3}
      ];

      Dimensions@data2
      {50, 1000, 2}


      I want to count how often data2[[j, i, 2]] == 1, where {i, 1, n1} and {j, 1, n3}.



      My solution for this more complicated list:



      result2 = Array[0 &, n3];

      Do[
      result2[[j]] =
      Table[
      Count[Flatten@(data2[[j, i, 2]]), u_ /; u == 1],
      {i, 1, n1}
      ];
      , {j, 1, n3}
      ];

      Dimensions@result2
      {50, 1000}


      How can I replace the Do loops in both cases and improve the performance?










      share|improve this question











      $endgroup$




      I have the following data set:



      n1 = 1000;
      data1 = {#, {RandomInteger[3, 20]}} & /@ Range[n1];

      Dimensions@data1
      {1000, 2}


      I want to count how often data1[[All, 2]] == 1.



      My solution:



      result1 = Table[
      Count[Flatten@(data1[[i, 2]]), u_ /; u == 1],
      {i, 1, n1}
      ];

      Dimensions@result1
      {1000}


      Now I have 50 appended lists of data1 (= data2).



      n3 = 50;

      data2 = Array[0 &, n3];

      Do[
      data2[[i]] = {#, {RandomInteger[3, 20]}} & /@ Range[n1];
      , {i, 1, n3}
      ];

      Dimensions@data2
      {50, 1000, 2}


      I want to count how often data2[[j, i, 2]] == 1, where {i, 1, n1} and {j, 1, n3}.



      My solution for this more complicated list:



      result2 = Array[0 &, n3];

      Do[
      result2[[j]] =
      Table[
      Count[Flatten@(data2[[j, i, 2]]), u_ /; u == 1],
      {i, 1, n1}
      ];
      , {j, 1, n3}
      ];

      Dimensions@result2
      {50, 1000}


      How can I replace the Do loops in both cases and improve the performance?







      list-manipulation






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited 21 hours ago







      lio

















      asked yesterday









      liolio

      1,147217




      1,147217






















          2 Answers
          2






          active

          oldest

          votes


















          4












          $begingroup$

          r1 = Total[1 - Unitize[data1[[All, 2, 1]] - 1], {2}] 

          Short @ %



          {5,5,4,6,5,8,5,6,5,4,8,6,3,3,2,7,2,9,5,6,4,5,3,8,7,6,8,3,7,5,9,4,7,6,5,4,5,5,<<925>>,7,5,6,6,3,5,4,6,6,9,7,9,5,6,4,3,8,4,4,6,6,9,6,6,3,8,3,4,1,8,4,4,4,5,7,8,5}




          r2 = Join @@@ Total[1 - Unitize[data2[[All, All, 2]] - 1], {4}];
          r2 // Dimensions



          {50, 1000}




          Timings: Timing comparison with OP's Do loop and MarcoB's Map[Count,...] for data2:



          n1 = 1000;
          n3 = 50;
          data2 = Array[0 &, n3];
          SeedRandom[1]
          Do[data2[[i]] = {#, {RandomInteger[3, 20]}} & /@ Range[n1];, {i, 1, n3}];

          result2a = Join @@@ Total[1 - Unitize[data2[[All, All, 2]] - 1], {4}]; //
          RepeatedTiming // First



          0.037




          result2b = Map[Count[1], data2[[All, All, 2, 1]], {2}]; // RepeatedTiming // First



          0.12




          (result2 = Array[0 &, n3];
          Do[result2[[j]] = Table[Count[Flatten@(data2[[j, i, 2]]), u_ /; u == 1],
          {i, 1, n1}];, {j, 1, n3}];) // RepeatedTiming // First



          7.8




          result2 == result2a == result2b



          True







          share|improve this answer











          $endgroup$













          • $begingroup$
            Great ... what do you think about result2. Now the Indices in the result2 double loop are correct.
            $endgroup$
            – lio
            yesterday










          • $begingroup$
            @lio, please see the update.
            $endgroup$
            – kglr
            yesterday










          • $begingroup$
            Since especially n3 in my real problems is much larger than 50 I vote for your fast solution. Thank you for the timings. May I ask you something: how can the creation of data2 also be expressed instead of using the do loop Do[data2[[i]] = {#, {RandomInteger[3, 20]}} & /@ Range[n1];, {i, 1, n3}];?
            $endgroup$
            – lio
            17 hours ago








          • 1




            $begingroup$
            @li, thank you for the accept. You can do data2b = Table[ Transpose[{Range[n1], RandomInteger[3, {n1, 20}]}], {i, 1, n3}]
            $endgroup$
            – kglr
            17 hours ago



















          5












          $begingroup$

          For your result1:



          Count[1] /@ data1[[All, 2, 1]]


          For your result2:



          Map[Count[1], data2[[All, All, 2, 1]], {2}];





          share|improve this answer











          $endgroup$













          • $begingroup$
            This is great ...
            $endgroup$
            – lio
            yesterday










          • $begingroup$
            Do you have an idea for result2 improvement?
            $endgroup$
            – lio
            yesterday






          • 1




            $begingroup$
            @lio Yes, I've added something for result2 as well. You can check that they give the same output as your result1 and result2 respectively.
            $endgroup$
            – MarcoB
            yesterday











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "387"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f193270%2fcounting-certain-elements-in-lists%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          2 Answers
          2






          active

          oldest

          votes








          2 Answers
          2






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          4












          $begingroup$

          r1 = Total[1 - Unitize[data1[[All, 2, 1]] - 1], {2}] 

          Short @ %



          {5,5,4,6,5,8,5,6,5,4,8,6,3,3,2,7,2,9,5,6,4,5,3,8,7,6,8,3,7,5,9,4,7,6,5,4,5,5,<<925>>,7,5,6,6,3,5,4,6,6,9,7,9,5,6,4,3,8,4,4,6,6,9,6,6,3,8,3,4,1,8,4,4,4,5,7,8,5}




          r2 = Join @@@ Total[1 - Unitize[data2[[All, All, 2]] - 1], {4}];
          r2 // Dimensions



          {50, 1000}




          Timings: Timing comparison with OP's Do loop and MarcoB's Map[Count,...] for data2:



          n1 = 1000;
          n3 = 50;
          data2 = Array[0 &, n3];
          SeedRandom[1]
          Do[data2[[i]] = {#, {RandomInteger[3, 20]}} & /@ Range[n1];, {i, 1, n3}];

          result2a = Join @@@ Total[1 - Unitize[data2[[All, All, 2]] - 1], {4}]; //
          RepeatedTiming // First



          0.037




          result2b = Map[Count[1], data2[[All, All, 2, 1]], {2}]; // RepeatedTiming // First



          0.12




          (result2 = Array[0 &, n3];
          Do[result2[[j]] = Table[Count[Flatten@(data2[[j, i, 2]]), u_ /; u == 1],
          {i, 1, n1}];, {j, 1, n3}];) // RepeatedTiming // First



          7.8




          result2 == result2a == result2b



          True







          share|improve this answer











          $endgroup$













          • $begingroup$
            Great ... what do you think about result2. Now the Indices in the result2 double loop are correct.
            $endgroup$
            – lio
            yesterday










          • $begingroup$
            @lio, please see the update.
            $endgroup$
            – kglr
            yesterday










          • $begingroup$
            Since especially n3 in my real problems is much larger than 50 I vote for your fast solution. Thank you for the timings. May I ask you something: how can the creation of data2 also be expressed instead of using the do loop Do[data2[[i]] = {#, {RandomInteger[3, 20]}} & /@ Range[n1];, {i, 1, n3}];?
            $endgroup$
            – lio
            17 hours ago








          • 1




            $begingroup$
            @li, thank you for the accept. You can do data2b = Table[ Transpose[{Range[n1], RandomInteger[3, {n1, 20}]}], {i, 1, n3}]
            $endgroup$
            – kglr
            17 hours ago
















          4












          $begingroup$

          r1 = Total[1 - Unitize[data1[[All, 2, 1]] - 1], {2}] 

          Short @ %



          {5,5,4,6,5,8,5,6,5,4,8,6,3,3,2,7,2,9,5,6,4,5,3,8,7,6,8,3,7,5,9,4,7,6,5,4,5,5,<<925>>,7,5,6,6,3,5,4,6,6,9,7,9,5,6,4,3,8,4,4,6,6,9,6,6,3,8,3,4,1,8,4,4,4,5,7,8,5}




          r2 = Join @@@ Total[1 - Unitize[data2[[All, All, 2]] - 1], {4}];
          r2 // Dimensions



          {50, 1000}




          Timings: Timing comparison with OP's Do loop and MarcoB's Map[Count,...] for data2:



          n1 = 1000;
          n3 = 50;
          data2 = Array[0 &, n3];
          SeedRandom[1]
          Do[data2[[i]] = {#, {RandomInteger[3, 20]}} & /@ Range[n1];, {i, 1, n3}];

          result2a = Join @@@ Total[1 - Unitize[data2[[All, All, 2]] - 1], {4}]; //
          RepeatedTiming // First



          0.037




          result2b = Map[Count[1], data2[[All, All, 2, 1]], {2}]; // RepeatedTiming // First



          0.12




          (result2 = Array[0 &, n3];
          Do[result2[[j]] = Table[Count[Flatten@(data2[[j, i, 2]]), u_ /; u == 1],
          {i, 1, n1}];, {j, 1, n3}];) // RepeatedTiming // First



          7.8




          result2 == result2a == result2b



          True







          share|improve this answer











          $endgroup$













          • $begingroup$
            Great ... what do you think about result2. Now the Indices in the result2 double loop are correct.
            $endgroup$
            – lio
            yesterday










          • $begingroup$
            @lio, please see the update.
            $endgroup$
            – kglr
            yesterday










          • $begingroup$
            Since especially n3 in my real problems is much larger than 50 I vote for your fast solution. Thank you for the timings. May I ask you something: how can the creation of data2 also be expressed instead of using the do loop Do[data2[[i]] = {#, {RandomInteger[3, 20]}} & /@ Range[n1];, {i, 1, n3}];?
            $endgroup$
            – lio
            17 hours ago








          • 1




            $begingroup$
            @li, thank you for the accept. You can do data2b = Table[ Transpose[{Range[n1], RandomInteger[3, {n1, 20}]}], {i, 1, n3}]
            $endgroup$
            – kglr
            17 hours ago














          4












          4








          4





          $begingroup$

          r1 = Total[1 - Unitize[data1[[All, 2, 1]] - 1], {2}] 

          Short @ %



          {5,5,4,6,5,8,5,6,5,4,8,6,3,3,2,7,2,9,5,6,4,5,3,8,7,6,8,3,7,5,9,4,7,6,5,4,5,5,<<925>>,7,5,6,6,3,5,4,6,6,9,7,9,5,6,4,3,8,4,4,6,6,9,6,6,3,8,3,4,1,8,4,4,4,5,7,8,5}




          r2 = Join @@@ Total[1 - Unitize[data2[[All, All, 2]] - 1], {4}];
          r2 // Dimensions



          {50, 1000}




          Timings: Timing comparison with OP's Do loop and MarcoB's Map[Count,...] for data2:



          n1 = 1000;
          n3 = 50;
          data2 = Array[0 &, n3];
          SeedRandom[1]
          Do[data2[[i]] = {#, {RandomInteger[3, 20]}} & /@ Range[n1];, {i, 1, n3}];

          result2a = Join @@@ Total[1 - Unitize[data2[[All, All, 2]] - 1], {4}]; //
          RepeatedTiming // First



          0.037




          result2b = Map[Count[1], data2[[All, All, 2, 1]], {2}]; // RepeatedTiming // First



          0.12




          (result2 = Array[0 &, n3];
          Do[result2[[j]] = Table[Count[Flatten@(data2[[j, i, 2]]), u_ /; u == 1],
          {i, 1, n1}];, {j, 1, n3}];) // RepeatedTiming // First



          7.8




          result2 == result2a == result2b



          True







          share|improve this answer











          $endgroup$



          r1 = Total[1 - Unitize[data1[[All, 2, 1]] - 1], {2}] 

          Short @ %



          {5,5,4,6,5,8,5,6,5,4,8,6,3,3,2,7,2,9,5,6,4,5,3,8,7,6,8,3,7,5,9,4,7,6,5,4,5,5,<<925>>,7,5,6,6,3,5,4,6,6,9,7,9,5,6,4,3,8,4,4,6,6,9,6,6,3,8,3,4,1,8,4,4,4,5,7,8,5}




          r2 = Join @@@ Total[1 - Unitize[data2[[All, All, 2]] - 1], {4}];
          r2 // Dimensions



          {50, 1000}




          Timings: Timing comparison with OP's Do loop and MarcoB's Map[Count,...] for data2:



          n1 = 1000;
          n3 = 50;
          data2 = Array[0 &, n3];
          SeedRandom[1]
          Do[data2[[i]] = {#, {RandomInteger[3, 20]}} & /@ Range[n1];, {i, 1, n3}];

          result2a = Join @@@ Total[1 - Unitize[data2[[All, All, 2]] - 1], {4}]; //
          RepeatedTiming // First



          0.037




          result2b = Map[Count[1], data2[[All, All, 2, 1]], {2}]; // RepeatedTiming // First



          0.12




          (result2 = Array[0 &, n3];
          Do[result2[[j]] = Table[Count[Flatten@(data2[[j, i, 2]]), u_ /; u == 1],
          {i, 1, n1}];, {j, 1, n3}];) // RepeatedTiming // First



          7.8




          result2 == result2a == result2b



          True








          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited 21 hours ago

























          answered yesterday









          kglrkglr

          189k10205422




          189k10205422












          • $begingroup$
            Great ... what do you think about result2. Now the Indices in the result2 double loop are correct.
            $endgroup$
            – lio
            yesterday










          • $begingroup$
            @lio, please see the update.
            $endgroup$
            – kglr
            yesterday










          • $begingroup$
            Since especially n3 in my real problems is much larger than 50 I vote for your fast solution. Thank you for the timings. May I ask you something: how can the creation of data2 also be expressed instead of using the do loop Do[data2[[i]] = {#, {RandomInteger[3, 20]}} & /@ Range[n1];, {i, 1, n3}];?
            $endgroup$
            – lio
            17 hours ago








          • 1




            $begingroup$
            @li, thank you for the accept. You can do data2b = Table[ Transpose[{Range[n1], RandomInteger[3, {n1, 20}]}], {i, 1, n3}]
            $endgroup$
            – kglr
            17 hours ago


















          • $begingroup$
            Great ... what do you think about result2. Now the Indices in the result2 double loop are correct.
            $endgroup$
            – lio
            yesterday










          • $begingroup$
            @lio, please see the update.
            $endgroup$
            – kglr
            yesterday










          • $begingroup$
            Since especially n3 in my real problems is much larger than 50 I vote for your fast solution. Thank you for the timings. May I ask you something: how can the creation of data2 also be expressed instead of using the do loop Do[data2[[i]] = {#, {RandomInteger[3, 20]}} & /@ Range[n1];, {i, 1, n3}];?
            $endgroup$
            – lio
            17 hours ago








          • 1




            $begingroup$
            @li, thank you for the accept. You can do data2b = Table[ Transpose[{Range[n1], RandomInteger[3, {n1, 20}]}], {i, 1, n3}]
            $endgroup$
            – kglr
            17 hours ago
















          $begingroup$
          Great ... what do you think about result2. Now the Indices in the result2 double loop are correct.
          $endgroup$
          – lio
          yesterday




          $begingroup$
          Great ... what do you think about result2. Now the Indices in the result2 double loop are correct.
          $endgroup$
          – lio
          yesterday












          $begingroup$
          @lio, please see the update.
          $endgroup$
          – kglr
          yesterday




          $begingroup$
          @lio, please see the update.
          $endgroup$
          – kglr
          yesterday












          $begingroup$
          Since especially n3 in my real problems is much larger than 50 I vote for your fast solution. Thank you for the timings. May I ask you something: how can the creation of data2 also be expressed instead of using the do loop Do[data2[[i]] = {#, {RandomInteger[3, 20]}} & /@ Range[n1];, {i, 1, n3}];?
          $endgroup$
          – lio
          17 hours ago






          $begingroup$
          Since especially n3 in my real problems is much larger than 50 I vote for your fast solution. Thank you for the timings. May I ask you something: how can the creation of data2 also be expressed instead of using the do loop Do[data2[[i]] = {#, {RandomInteger[3, 20]}} & /@ Range[n1];, {i, 1, n3}];?
          $endgroup$
          – lio
          17 hours ago






          1




          1




          $begingroup$
          @li, thank you for the accept. You can do data2b = Table[ Transpose[{Range[n1], RandomInteger[3, {n1, 20}]}], {i, 1, n3}]
          $endgroup$
          – kglr
          17 hours ago




          $begingroup$
          @li, thank you for the accept. You can do data2b = Table[ Transpose[{Range[n1], RandomInteger[3, {n1, 20}]}], {i, 1, n3}]
          $endgroup$
          – kglr
          17 hours ago











          5












          $begingroup$

          For your result1:



          Count[1] /@ data1[[All, 2, 1]]


          For your result2:



          Map[Count[1], data2[[All, All, 2, 1]], {2}];





          share|improve this answer











          $endgroup$













          • $begingroup$
            This is great ...
            $endgroup$
            – lio
            yesterday










          • $begingroup$
            Do you have an idea for result2 improvement?
            $endgroup$
            – lio
            yesterday






          • 1




            $begingroup$
            @lio Yes, I've added something for result2 as well. You can check that they give the same output as your result1 and result2 respectively.
            $endgroup$
            – MarcoB
            yesterday
















          5












          $begingroup$

          For your result1:



          Count[1] /@ data1[[All, 2, 1]]


          For your result2:



          Map[Count[1], data2[[All, All, 2, 1]], {2}];





          share|improve this answer











          $endgroup$













          • $begingroup$
            This is great ...
            $endgroup$
            – lio
            yesterday










          • $begingroup$
            Do you have an idea for result2 improvement?
            $endgroup$
            – lio
            yesterday






          • 1




            $begingroup$
            @lio Yes, I've added something for result2 as well. You can check that they give the same output as your result1 and result2 respectively.
            $endgroup$
            – MarcoB
            yesterday














          5












          5








          5





          $begingroup$

          For your result1:



          Count[1] /@ data1[[All, 2, 1]]


          For your result2:



          Map[Count[1], data2[[All, All, 2, 1]], {2}];





          share|improve this answer











          $endgroup$



          For your result1:



          Count[1] /@ data1[[All, 2, 1]]


          For your result2:



          Map[Count[1], data2[[All, All, 2, 1]], {2}];






          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited yesterday

























          answered yesterday









          MarcoBMarcoB

          37.5k556113




          37.5k556113












          • $begingroup$
            This is great ...
            $endgroup$
            – lio
            yesterday










          • $begingroup$
            Do you have an idea for result2 improvement?
            $endgroup$
            – lio
            yesterday






          • 1




            $begingroup$
            @lio Yes, I've added something for result2 as well. You can check that they give the same output as your result1 and result2 respectively.
            $endgroup$
            – MarcoB
            yesterday


















          • $begingroup$
            This is great ...
            $endgroup$
            – lio
            yesterday










          • $begingroup$
            Do you have an idea for result2 improvement?
            $endgroup$
            – lio
            yesterday






          • 1




            $begingroup$
            @lio Yes, I've added something for result2 as well. You can check that they give the same output as your result1 and result2 respectively.
            $endgroup$
            – MarcoB
            yesterday
















          $begingroup$
          This is great ...
          $endgroup$
          – lio
          yesterday




          $begingroup$
          This is great ...
          $endgroup$
          – lio
          yesterday












          $begingroup$
          Do you have an idea for result2 improvement?
          $endgroup$
          – lio
          yesterday




          $begingroup$
          Do you have an idea for result2 improvement?
          $endgroup$
          – lio
          yesterday




          1




          1




          $begingroup$
          @lio Yes, I've added something for result2 as well. You can check that they give the same output as your result1 and result2 respectively.
          $endgroup$
          – MarcoB
          yesterday




          $begingroup$
          @lio Yes, I've added something for result2 as well. You can check that they give the same output as your result1 and result2 respectively.
          $endgroup$
          – MarcoB
          yesterday


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematica Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f193270%2fcounting-certain-elements-in-lists%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Plaza Victoria

          Puebla de Zaragoza

          Musa