Operator norm on Lebesgue integrable functions
$begingroup$
Let $L_1([0,1],m)$ be the Banach space of $mathbb{K}$-valued integrable functions with respect to Lebesgue measure $m$, where $mathbb{K}$ is either $mathbb{R}$ or $mathbb{C}$. The norm on this space is defined like this: $||f||_1=int_{[0,1]}|f| dm$. I have to show that:
$a)$ For $n geq 2$ the operator $varphi_n(f)=int_{[0,1]} f g_n dm$, where $g_n(x)=n sin(n^2x)$ for $x in [0,1]$ is bounded with $||varphi_n||=n$.
$b)$ Show that there exists $f in L_1([0,1],m)$ such that $lim_{n to infty} |varphi_n( f)|=infty$.
MY ATTEMPT:
$g_n$ is Lebesgue integrable on $[0,1]$ since it's Riemann integrable. Hence $fg_n in L_1([0,1],m)$ and $|int_{[0,1]}fg_n dm| leq int_{[0,1]}|fg_n| dm$. We also have that $||fg_n||_1 leq ||f||_1||g_n||_infty$.
Thus $||varphi_n(f)||=|int_{[0,1]}fg_n dm| leq int_{[0,1]}|fg_n| dm=||fg_n||_1 leq ||f||_1 ||g_n||_infty$, i.e. $varphi_n$ is bounded. Now $||g_n||_infty=n$ since it's continuous on a bounded interval and the $essential$ $supremum$ is the same as the $max$. Now I would like to attain the equality with some function, and once that I find it I can use in part $b)$. Any ideas on the function?
functional-analysis lebesgue-integral lebesgue-measure norm
$endgroup$
add a comment |
$begingroup$
Let $L_1([0,1],m)$ be the Banach space of $mathbb{K}$-valued integrable functions with respect to Lebesgue measure $m$, where $mathbb{K}$ is either $mathbb{R}$ or $mathbb{C}$. The norm on this space is defined like this: $||f||_1=int_{[0,1]}|f| dm$. I have to show that:
$a)$ For $n geq 2$ the operator $varphi_n(f)=int_{[0,1]} f g_n dm$, where $g_n(x)=n sin(n^2x)$ for $x in [0,1]$ is bounded with $||varphi_n||=n$.
$b)$ Show that there exists $f in L_1([0,1],m)$ such that $lim_{n to infty} |varphi_n( f)|=infty$.
MY ATTEMPT:
$g_n$ is Lebesgue integrable on $[0,1]$ since it's Riemann integrable. Hence $fg_n in L_1([0,1],m)$ and $|int_{[0,1]}fg_n dm| leq int_{[0,1]}|fg_n| dm$. We also have that $||fg_n||_1 leq ||f||_1||g_n||_infty$.
Thus $||varphi_n(f)||=|int_{[0,1]}fg_n dm| leq int_{[0,1]}|fg_n| dm=||fg_n||_1 leq ||f||_1 ||g_n||_infty$, i.e. $varphi_n$ is bounded. Now $||g_n||_infty=n$ since it's continuous on a bounded interval and the $essential$ $supremum$ is the same as the $max$. Now I would like to attain the equality with some function, and once that I find it I can use in part $b)$. Any ideas on the function?
functional-analysis lebesgue-integral lebesgue-measure norm
$endgroup$
add a comment |
$begingroup$
Let $L_1([0,1],m)$ be the Banach space of $mathbb{K}$-valued integrable functions with respect to Lebesgue measure $m$, where $mathbb{K}$ is either $mathbb{R}$ or $mathbb{C}$. The norm on this space is defined like this: $||f||_1=int_{[0,1]}|f| dm$. I have to show that:
$a)$ For $n geq 2$ the operator $varphi_n(f)=int_{[0,1]} f g_n dm$, where $g_n(x)=n sin(n^2x)$ for $x in [0,1]$ is bounded with $||varphi_n||=n$.
$b)$ Show that there exists $f in L_1([0,1],m)$ such that $lim_{n to infty} |varphi_n( f)|=infty$.
MY ATTEMPT:
$g_n$ is Lebesgue integrable on $[0,1]$ since it's Riemann integrable. Hence $fg_n in L_1([0,1],m)$ and $|int_{[0,1]}fg_n dm| leq int_{[0,1]}|fg_n| dm$. We also have that $||fg_n||_1 leq ||f||_1||g_n||_infty$.
Thus $||varphi_n(f)||=|int_{[0,1]}fg_n dm| leq int_{[0,1]}|fg_n| dm=||fg_n||_1 leq ||f||_1 ||g_n||_infty$, i.e. $varphi_n$ is bounded. Now $||g_n||_infty=n$ since it's continuous on a bounded interval and the $essential$ $supremum$ is the same as the $max$. Now I would like to attain the equality with some function, and once that I find it I can use in part $b)$. Any ideas on the function?
functional-analysis lebesgue-integral lebesgue-measure norm
$endgroup$
Let $L_1([0,1],m)$ be the Banach space of $mathbb{K}$-valued integrable functions with respect to Lebesgue measure $m$, where $mathbb{K}$ is either $mathbb{R}$ or $mathbb{C}$. The norm on this space is defined like this: $||f||_1=int_{[0,1]}|f| dm$. I have to show that:
$a)$ For $n geq 2$ the operator $varphi_n(f)=int_{[0,1]} f g_n dm$, where $g_n(x)=n sin(n^2x)$ for $x in [0,1]$ is bounded with $||varphi_n||=n$.
$b)$ Show that there exists $f in L_1([0,1],m)$ such that $lim_{n to infty} |varphi_n( f)|=infty$.
MY ATTEMPT:
$g_n$ is Lebesgue integrable on $[0,1]$ since it's Riemann integrable. Hence $fg_n in L_1([0,1],m)$ and $|int_{[0,1]}fg_n dm| leq int_{[0,1]}|fg_n| dm$. We also have that $||fg_n||_1 leq ||f||_1||g_n||_infty$.
Thus $||varphi_n(f)||=|int_{[0,1]}fg_n dm| leq int_{[0,1]}|fg_n| dm=||fg_n||_1 leq ||f||_1 ||g_n||_infty$, i.e. $varphi_n$ is bounded. Now $||g_n||_infty=n$ since it's continuous on a bounded interval and the $essential$ $supremum$ is the same as the $max$. Now I would like to attain the equality with some function, and once that I find it I can use in part $b)$. Any ideas on the function?
functional-analysis lebesgue-integral lebesgue-measure norm
functional-analysis lebesgue-integral lebesgue-measure norm
asked Dec 16 '18 at 22:00
user289143user289143
1,000313
1,000313
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Answer to part a): it is not necessary to get equality in $|int_{[0,1]} f(x)nsin(n^{2}x),dx | leq |f|_1|g|_{infty}$. Instead, we get an 'approximate equality' as follows: let $epsilon >0$. Choose $delta >0$ such that $sin, x>1-epsilon$ for $frac {pi} 2 -delta <x <frac {pi} 2 +delta $. Let $f=frac {n^{2}} {2delta} I_A$ where $A=(frac {pi} {2n^{2}} -frac {delta} {n^{2}}, frac {pi} {2n^{2}} +frac {delta} {n^{2}})$. Simple calculations show that $|f|_1=1$ and $phi_n(f) >n(1-epsilon)$. Hence $|phi_n| geq n(1-epsilon)$ for all $epsilon >0$. Hence $|phi_n|geq n$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3043231%2foperator-norm-on-lebesgue-integrable-functions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Answer to part a): it is not necessary to get equality in $|int_{[0,1]} f(x)nsin(n^{2}x),dx | leq |f|_1|g|_{infty}$. Instead, we get an 'approximate equality' as follows: let $epsilon >0$. Choose $delta >0$ such that $sin, x>1-epsilon$ for $frac {pi} 2 -delta <x <frac {pi} 2 +delta $. Let $f=frac {n^{2}} {2delta} I_A$ where $A=(frac {pi} {2n^{2}} -frac {delta} {n^{2}}, frac {pi} {2n^{2}} +frac {delta} {n^{2}})$. Simple calculations show that $|f|_1=1$ and $phi_n(f) >n(1-epsilon)$. Hence $|phi_n| geq n(1-epsilon)$ for all $epsilon >0$. Hence $|phi_n|geq n$.
$endgroup$
add a comment |
$begingroup$
Answer to part a): it is not necessary to get equality in $|int_{[0,1]} f(x)nsin(n^{2}x),dx | leq |f|_1|g|_{infty}$. Instead, we get an 'approximate equality' as follows: let $epsilon >0$. Choose $delta >0$ such that $sin, x>1-epsilon$ for $frac {pi} 2 -delta <x <frac {pi} 2 +delta $. Let $f=frac {n^{2}} {2delta} I_A$ where $A=(frac {pi} {2n^{2}} -frac {delta} {n^{2}}, frac {pi} {2n^{2}} +frac {delta} {n^{2}})$. Simple calculations show that $|f|_1=1$ and $phi_n(f) >n(1-epsilon)$. Hence $|phi_n| geq n(1-epsilon)$ for all $epsilon >0$. Hence $|phi_n|geq n$.
$endgroup$
add a comment |
$begingroup$
Answer to part a): it is not necessary to get equality in $|int_{[0,1]} f(x)nsin(n^{2}x),dx | leq |f|_1|g|_{infty}$. Instead, we get an 'approximate equality' as follows: let $epsilon >0$. Choose $delta >0$ such that $sin, x>1-epsilon$ for $frac {pi} 2 -delta <x <frac {pi} 2 +delta $. Let $f=frac {n^{2}} {2delta} I_A$ where $A=(frac {pi} {2n^{2}} -frac {delta} {n^{2}}, frac {pi} {2n^{2}} +frac {delta} {n^{2}})$. Simple calculations show that $|f|_1=1$ and $phi_n(f) >n(1-epsilon)$. Hence $|phi_n| geq n(1-epsilon)$ for all $epsilon >0$. Hence $|phi_n|geq n$.
$endgroup$
Answer to part a): it is not necessary to get equality in $|int_{[0,1]} f(x)nsin(n^{2}x),dx | leq |f|_1|g|_{infty}$. Instead, we get an 'approximate equality' as follows: let $epsilon >0$. Choose $delta >0$ such that $sin, x>1-epsilon$ for $frac {pi} 2 -delta <x <frac {pi} 2 +delta $. Let $f=frac {n^{2}} {2delta} I_A$ where $A=(frac {pi} {2n^{2}} -frac {delta} {n^{2}}, frac {pi} {2n^{2}} +frac {delta} {n^{2}})$. Simple calculations show that $|f|_1=1$ and $phi_n(f) >n(1-epsilon)$. Hence $|phi_n| geq n(1-epsilon)$ for all $epsilon >0$. Hence $|phi_n|geq n$.
edited Dec 17 '18 at 6:41
answered Dec 17 '18 at 4:57
Kavi Rama MurthyKavi Rama Murthy
67.5k53067
67.5k53067
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3043231%2foperator-norm-on-lebesgue-integrable-functions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown